Polyketide chain skipping mechanism in the biosynthesis of the hybrid nonribosomal peptide-polyketide antitumor antibiotic leinamycin in Streptomyces atroolivaceus S-140.
نویسندگان
چکیده
A fundamental feature of modular polyketide synthases (PKSs) is the highly predictable relationship between the domain order and the chemical functional groups of resultant polyketide products. Sequence analysis and biochemical characterization of the leinamycin (LNM) biosynthetic gene cluster from Streptomyces atroolivaceus S-140 has revealed a gene, lnmJ, that encodes five PKS modules but with six acyl carrier protein (ACP) domains. The LnmJ PKS module 6 contains two ACP domains, ACP(6-1) and ACP(6-2), separated by a C-methyltransferase domain. Site-directed mutagenesis experiments were carried out with each of these ACPs to test alternative mechanisms proposed for their role in polyketide chain elongation. The in vivo results revealed a new type of polyketide chain "skipping" mechanism, in which either ACP is sufficient for LNM biosynthesis. Biochemical characterization in vitro showed that both ACPs can be loaded with a malonate extender unit by the LnmG acyl transferase; however, ACP(6-2) appears to be preferred because the loading efficiency is about 5-fold that of ACP(6-1). The results are consistent with ACP(6-2) being used for the initial chain elongation step wth ACP(6-1) being involved in the ensuing C-methylation process. These findings provide new insights into the polyketide chain skipping mechanism for modular PKSs.
منابع مشابه
Identification and localization of the gene cluster encoding biosynthesis of the antitumor macrolactam leinamycin in Streptomyces atroolivaceus S-140.
Leinamycin (LNM), produced by Streptomyces atroolivaceus, is a thiazole-containing hybrid peptide-polyketide natural product structurally characterized with an unprecedented 1,3-dioxo-1,2-dithiolane moiety that is spiro-fused to a 18-member macrolactam ring. LNM exhibits a broad spectrum of antimicrobial and antitumor activities, most significantly against tumors that are resistant to clinicall...
متن کاملLeinamycin biosynthesis revealing unprecedented architectural complexity for a hybrid polyketide synthase and nonribosomal peptide synthetase.
A 135,638 bp DNA region that encompasses the leinamycin (LNM) biosynthetic gene cluster was sequenced from Streptomyces atroolivaceus S-140. The boundaries of the lnm cluster were defined by systematic inactivation of open reading frames within the sequenced region. The lnm cluster spans 61.3 kb of DNA and consists of 27 genes encoding nonribosomal peptide synthetase (NRPS), polyketide synthase...
متن کاملChain Initiation in the Leinamycin-producing Hybrid Nonribosomal Peptide/Polyketide Synthetase from Streptomyces atroolivaceus S-140 DISCRETE, MONOFUNCTIONAL ADENYLATION ENZYME AND PEPTIDYL CARRIER PROTEIN THAT DIRECTLY LOAD
Nonribosomal peptide natural products are biosynthesized from amino acid precursors by nonribosomal peptide synthetases (NRPSs), which are organized into modules. For a typical NRPS initiationmodule, an adenylation (A) domain activates an amino acid and installs it onto a peptidyl carrier protein (PCP) domain as a thioester; an elongation module, which has a condensation (C) domain located betw...
متن کاملCharacterization of the Ketosynthase and Acyl Carrier Protein Domains at the LnmI Nonribosomal Peptide Synthetase–Polyketide Synthase Interface for Leinamycin Biosynthesis
Leinamycin (LNM) is biosynthesized by a hybrid nonribosomal peptide synthetase (NRPS)-acyltransferase (AT)-less type I polyketide synthase (PKS). Characterization of LnmI revealed ketosynthase (KS)-acyl carrier protein (ACP)-KS domains at the NRPS-PKS interface. Inactivation of the KS domain or ACP domain in vivo abolished LNM production, and the ACP domain can be phosphopantetheinylated in vit...
متن کاملThe biosynthetic gene cluster for the antitumor drug bleomycin from Streptomyces verticillus ATCC15003 supporting functional interactions between nonribosomal peptide synthetases and a polyketide synthase.
BACKGROUND The structural and catalytic similarities between modular nonribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs) inspired us to search for a hybrid NRPS-PKS system. The antitumor drug bleomycin (BLM) is a natural hybrid peptide-polyketide metabolite, the biosynthesis of which provides an excellent opportunity to investigate intermodular communication between NRPS an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of natural products
دوره 69 3 شماره
صفحات -
تاریخ انتشار 2006