Shaping a Subwavelength Needle with Ultra-long Focal Length by Focusing Azimuthally Polarized Light
نویسندگان
چکیده
Flat optics, which could planarize and miniaturize the traditional optical elements, possesses the features of extremely low profile and high integration for advanced manipulation of light. Here we proposed and experimentally demonstrated a planar metalens to realize an ultra-long focal length of ~240λ with a large depth of focus (DOF) of ~12λ, under the illumination of azimuthally polarized beam with vortical phase at 633 nm. Equally important is that such a flat lens could stably keep a lateral subwavelength width of 0.42λ to 0.49λ along the needle-like focal region. It exhibits one-order improvement in the focal length compared to the traditional focal lengths of 20~30λ of flat lens, under the criterion of having subwavelength focusing spot. The ultra-long focal length ensures sufficient space for subsequent characterization behind the lens in practical industry setups, while subwavelength cross section and large DOF enable high resolution in transverse imaging and nanolithography and high tolerance in axial positioning in the meantime. Such planar metalens with those simultaneous advantages is prepared by laser pattern generator rather than focused ion beam, which makes the mass production possible.
منابع مشابه
Generation of a sub-diffraction hollow ring by shaping an azimuthally polarized wave
The generation of a sub-diffraction optical hollow ring is of great interest in various applications, such as optical microscopy, optical tweezers, and nanolithography. Azimuthally polarized light is a good candidate for creating an optical hollow ring structure. Various of methods have been proposed theoretically for generation of sub-wavelength hollow ring by focusing azimuthally polarized li...
متن کاملSuper-oscillatory focusing of circularly polarized light by ultra-long focal length planar lens based on binary amplitude-phase modulation
In traditional optics, the focal spot size of a conventional lens is restricted to the diffraction limit 0.5λ/NA, where λ is the wavelength in vacuum and NA is the numerical aperture of the lens. Recently, various sub-diffraction focusing optical devices have been demonstrated, but they usually have short focal length and high numerical aperture. Moreover, they always suffer the problem of huge...
متن کاملUltralong pure longitudinal magnetization needle induced by annular vortex binary optics.
In this Letter, based on the Richards and Wolf diffraction theory, an ultralong optical needle with pure transverse polarization is numerically generated by tightly focusing an azimuthally polarized beam through an annular vortex binary filter. Such an ultralong transversely polarized optical needle is generated through the π phase shift between adjacent rings of the binary filter. We show that...
متن کاملCreation of Sub-diffraction Longitudinally Polarized Spot by Focusing Radially Polarized Light with Binary Phase Lens
The generation of a sub-diffraction longitudinally polarized spot is of great interest in various applications, such as optical tweezers, super-resolution microscopy, high-resolution Raman spectroscopy, and high-density optical data storage. Many theoretical investigations have been conducted into the tight focusing of a longitudinally polarized spot with high-numerical-aperture aplanatic lense...
متن کاملSubwavelength Gratings for Generating Azimuthally Polarized Beams
We have experimentally investigated two binary subwavelength grating-miсropolarizers that transform linearly polarized light to the azimuthally polarized beam. The first miсropolarizer operates in reflective mode (for wavelength 532 nm) and was manufactured in a gold film. The second micropolarizer operates in transmitting mode (for wavelength 633 nm) and was manufactured in silicon.
متن کامل