Modular, polymer-directed nanoparticle assembly for fabricating metamaterials.

نویسندگان

  • Gurunatha K Laxminarayana
  • Matthew Rozin
  • Stephanie Smith
  • Andrea R Tao
چکیده

We achieve the fabrication of plasmonic meta-atoms by utilizing a novel, modular approach to nanoparticle self-assembly that utilizes polymer templating to control meta-atom size and geometry. Ag nanocubes are deposited and embedded into a polymer thin-film, where the polymer embedding depth is used to dictate which nanocube faces are available for further nanocrystal binding. Horizontal and vertical nanocube dimers were successfully fabricated with remarkably high yield using a bifunctional molecular linker to bind a second nanocube. Surface plasmon coupling can be readily tuned by varying the size, shape, and orientation of the second nanoparticle. We show that meta-atoms can be fabricated to exhibit angle- and polarization-dependent optical properties. This scalable technique for meta-atom assembly can be used to fabricate large-area metasurfaces for polarization- and phase-sensitive applications, such as optical sensing.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Confined Pattern-Directed Assembly of Polymer-Grafted Nanoparticles in a Phase Separating Blend with a Homopolymer Matrix.

The controlled organization of nanoparticle (NP) constituents into superstructures of well-defined shape, composition and connectivity represents a continuing challenge in the development of novel hybrid materials for many technological applications. We show that the phase separation of polymer-tethered nanoparticles immersed in a chemically different polymer matrix provides an effective and sc...

متن کامل

Proceedings Published 2007 by the American Chemical Society POLYMER NANOCOMPOSITES WITH PRESCRIBED MORPHOLOGY: GOING BEYOND NANOPARTICLE-FILLED POLYMERS

Introduction Over the last decade, Polymer Nanocomposites (PNCs) have been one of the most extensively examined areas of polymeric nanomaterials. These efforts have lead to numerous commercial successes, innovative approaches for fabricating and tailoring hybrid materials, and important fundamental insights on the behavior of polymers in confined environments . Given the extensive variety of na...

متن کامل

Hierarchical nanoparticle assemblies formed by decorating breath figures.

The combination of two self-assembly processes on different length scales leads to the formation of hierarchically structured nanoparticle arrays. Here, the formation of spherical cavities, or 'breath figures'-made by the condensation of micrometre-sized water droplets on the surface of a polymer solution-that self-assemble into a well-ordered hexagonal array, is combined with the self-assembly...

متن کامل

Metal nanocluster metamaterial fabricated by the colloidal self-assembly.

A new bottom-up approach for fabricating the optical metamaterial is reported. An array of metal nanoparticle clusters can provide both electric and magnetic activity in the optical frequency region through the excitation of the collective plasmon resonance. A two-dimensional square array of gold nanoparticle clusters (nanoclusters) was fabricated by using the template-directed colloidal self-a...

متن کامل

Two-dimensional gold trisoctahedron nanoparticle superlattice sheets: self-assembly, characterization and immunosensing applications.

Nanoparticles were called "artificial atoms" about two decades ago due to their ability to organize into regular lattices or supracrystals. Their self-assembly into free-standing, two-dimensional (2D) nanoparticle arrays enables the generation of 2D metamaterials for novel applications in sensing, nanophotonics and energy fields. However, their controlled fabrication is nontrivial due to the co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Faraday discussions

دوره 186  شماره 

صفحات  -

تاریخ انتشار 2016