Molecular Diffusion through Cyanobacterial Septal Junctions
نویسندگان
چکیده
Heterocyst-forming cyanobacteria grow as filaments in which intercellular molecular exchange takes place. During the differentiation of N2-fixing heterocysts, regulators are transferred between cells. In the diazotrophic filament, vegetative cells that fix CO2 through oxygenic photosynthesis provide the heterocysts with reduced carbon and heterocysts provide the vegetative cells with fixed nitrogen. Intercellular molecular transfer has been traced with fluorescent markers, including calcein, 5-carboxyfluorescein, and the sucrose analogue esculin, which are observed to move down their concentration gradient. In this work, we used fluorescence recovery after photobleaching (FRAP) assays in the model heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120 to measure the temperature dependence of intercellular transfer of fluorescent markers. We find that the transfer rate constants are directly proportional to the absolute temperature. This indicates that the "septal junctions" (formerly known as "microplasmodesmata") linking the cells in the filament allow molecular exchange by simple diffusion, without any activated intermediate state. This constitutes a novel mechanism for molecular transfer across the bacterial cytoplasmic membrane, in addition to previously characterized mechanisms for active transport and facilitated diffusion. Cyanobacterial septal junctions are functionally analogous to the gap junctions of metazoans. IMPORTANCE Although bacteria are frequently considered just as unicellular organisms, there are bacteria that behave as true multicellular organisms. The heterocyst-forming cyanobacteria grow as filaments in which cells communicate. Intercellular molecular exchange is thought to be mediated by septal junctions. Here, we show that intercellular transfer of fluorescent markers in the cyanobacterial filament has the physical properties of simple diffusion. Thus, cyanobacterial septal junctions are functionally analogous to metazoan gap junctions, although their molecular components appear unrelated. Like metazoan gap junctions, the septal junctions of cyanobacteria allow the rapid intercellular exchange of small molecules, without stringent selectivity. Our finding expands the repertoire of mechanisms for molecular transfer across the plasma membrane in prokaryotes.
منابع مشابه
Thermodynamic Basis of Molecular Diffusion through Cyanobacterial Septal Junctions
A recent paper published by Nieves-Morión and colleagues proposes that the intercellular transfer of small molecules in heterocyst-forming cyanobacteria (calcein, 5-carboxyfluorescein [5-CF], and esculin) is mediated by simple diffusion based on the Q10 values of the kinetics (1). In this letter, we show our analysis of their results to provide a thermodynamic basis of the kinetics. We obtained...
متن کاملThe Peptidoglycan-Binding Protein SjcF1 Influences Septal Junction Function and Channel Formation in the Filamentous Cyanobacterium Anabaena
UNLABELLED Filamentous, heterocyst-forming cyanobacteria exchange nutrients and regulators between cells for diazotrophic growth. Two alternative modes of exchange have been discussed involving transport either through the periplasm or through septal junctions linking adjacent cells. Septal junctions and channels in the septal peptidoglycan are likely filled with septal junction complexes. Whil...
متن کاملModeling of Manufacturing of Field-Effect Heterotransistors without P-n-junctions to Optimize Decreasing their Dimensions
It has been recently shown that manufacturing p-n-junctions, field-effect and bipolar transistors, thyristors in a multilayer structure by diffusion or ion implantation with the optimization of dopant and/or radiation defects leads to increase the sharpness of p-n-junctions (both single p-n-junctions and p-n-junctions framework their system). Due to the optimization, one can also obtain increas...
متن کاملAssembling molecular electronic junctions one molecule at a time.
Diffusion of metal atoms onto a molecular monolayer attached to a conducting surface permits electronic contact to the molecules with minimal heat transfer or structural disturbance. Surface-mediated metal deposition (SDMD) involves contact between "cold" diffusing metal atoms and molecules, due to shielding of the molecules from direct exposure to metal vapor. Measurement of the current throug...
متن کاملTaxonomic survey of cyanobacteria of Urmia Lake (NW Iran) and their adjacent ecosystems based on morphological and molecular methods
In the present study, the cyanobacterial flora of Urmia Lake (NW Iran), one of the largest salt lakes in the world and adjacent rivers is investigated. Urmia Lake comprises different micro-organisms including cyanobacteria which have a major role in aquatic ecosystems. Cyanobacterial samples were collected in 2008–09 from Urmia Lake and its surrounding ecosystems. All samples were cultivated, i...
متن کامل