Bending fatigue of hybrid composite rods

نویسنده

  • N. K. Kar
چکیده

The flexural fatigue behavior of hybrid composite rods comprised of unidirectional carbon and glass fibers was investigated. Damage was evaluated by monitoring stiffness loss as a function of cycles, and bending fatigue failure was defined in terms of strength retention. The acoustic emission technique and microscopic examination were used to characterize damage progression and failure mechanisms. The number of cycles to failure depended on applied stress level, and a two-parameter Weibull analysis was used to incorporate probability of failure to the S–N curve. Damage initiated and propagated as a result of matrix cracking and fiber bundle failures within the GF shell. Bending fatigue damage only initiated when the hybrid was exposed to a deflection in excess of 42% of flexural strength, which does not occur in actual conductor field use. Damage reached a saturation point along the GF/CF interface because of the stress concentration that existed between the two material systems, resulting in asymptotic behavior of the stiffness loss. Because damage did not extend into the CF core, static mechanical properties were retained to ∼85% or more.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tension–tension fatigue of hybrid composite rods

The tension–tension fatigue behavior was investigated for a hybrid composite rod comprised of a unidirectional carbon fiber core and a glass fiber shell. Fatigue tests were performed at three R-ratios and four maximum applied stress levels (MAS) while recording the secant modulus at each cycle, and acoustic emission (AE) sensors were employed to monitor the activation of fatigue mechanisms. Fat...

متن کامل

Bending analysis of composite sandwich plates using generalized differential quadrature method based on FSDT

Nowadays, the technology intends to use materials such as magnesium alloys due to their high strength to weight ratio in engine components. As usual, engine cylinder heads and blocks has made of various types of cast irons and aluminum alloys. However, magnesium alloys has physical and mechanical properties near to aluminum alloys and reduce the weight up to 40 percents. In this article, a new ...

متن کامل

Flexural fatigue behavior of machinable and light-activated hybrid composites for esthetic restorations.

The purpose of this study was to determine the flexural strength and flexural fatigue strength of a machinable composite (GN-I) and three hybrid composites (Artglass, Estenia, and Gradia). Specimens (2 x 2 x 25 mm) were polymerized in a laboratory photo-curing unit and then immersed in water at 37 degrees C for 24 h, 6 months, and 1 year. After each immersion period, flexural strengths (4-PFS) ...

متن کامل

On Bending Response of Doubly Curved Laminated Composite Shells Using Hybrid Refined Models

This paper presents a static analysis of laminated composite doubly-curved shells using refined kinematic models with polynomial and non-polynomial functions recently introduced in the literature. To be specific, Maclaurin, trigonometric, exponential and zig-zag functions are employed. The employed refined models are based on the equivalent single layer theories. A simply supported shell is sub...

متن کامل

Mechanical Properties of Graphene/Epoxy Nanocomposites under Static and Flexural Fatigue Loadings

In the present study, the effect of various weight fractions of graphene nanoplatelet (GPL) on flexural fatigue behavior of epoxy polymer has been investigated at room temperature and generally the temperature was monitored on the surface of specimen during each test. The flexural stiffness of grapheme nano-platelet/epoxy nanocomposites at 0.1, 0.25 and 0.5 wt. % as a main effective parameter o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015