Closed Ideals of Operators on and Complemented Subspaces of Banach Spaces of Functions with Countable Support
نویسندگان
چکیده
Let λ be an infinite cardinal number and let `∞(λ) denote the subspace of `∞(λ) consisting of all functions which assume at most countably many non zero values. We classify all infinite dimensional complemented subspaces of `∞(λ), proving that they are isomorphic to `∞(κ) for some cardinal number κ. Then we show that the Banach algebra of all bounded linear operators on `∞(λ) or `∞(λ) has the unique maximal ideal consisting of operators through which the identity operator does not factor. Using similar techniques, we obtain an alternative to Daws’ approach description of the lattice of all closed ideals of B(X), where X = c0(λ) or X = `p(λ) for some p ∈ [1,∞), and we classify the closed ideals of B(`∞(λ)) that contain the ideal of weakly compact operators.
منابع مشابه
Weak*-closed invariant subspaces and ideals of semigroup algebras on foundation semigroups
Let S be a locally compact foundation semigroup with identity and be its semigroup algebra. Let X be a weak*-closed left translation invariant subspace of In this paper, we prove that X is invariantly complemented in if and only if the left ideal of has a bounded approximate identity. We also prove that a foundation semigroup with identity S is left amenab...
متن کاملShift Invariant Spaces and Shift Preserving Operators on Locally Compact Abelian Groups
We investigate shift invariant subspaces of $L^2(G)$, where $G$ is a locally compact abelian group. We show that every shift invariant space can be decomposed as an orthogonal sum of spaces each of which is generated by a single function whose shifts form a Parseval frame. For a second countable locally compact abelian group $G$ we prove a useful Hilbert space isomorphism, introduce range funct...
متن کاملOn an atomic decomposition in Banach spaces
An atomic decomposition is considered in Banach space. A method for constructing an atomic decomposition of Banach space, starting with atomic decomposition of subspaces is presented. Some relations between them are established. The proposed method is used in the study of the frame properties of systems of eigenfunctions and associated functions of discontinuous differential operators.
متن کاملm at h . FA ] 2 6 O ct 1 99 3 ON COMPLEMENTED SUBSPACES OF SUMS AND PRODUCTS OF BANACH SPACES
It is proved that there exist complemented subspaces of countable topo-logical products (locally convex direct sums) of Banach spaces which cannot be represented as topological products (locally convex direct sums) of Banach spaces The problem of description of complemented subspaces of a given locally convex space is one of the general problems of structure theory of locally convex spaces. In ...
متن کاملCompact composition operators on real Banach spaces of complex-valued bounded Lipschitz functions
We characterize compact composition operators on real Banach spaces of complex-valued bounded Lipschitz functions on metric spaces, not necessarily compact, with Lipschitz involutions and determine their spectra.
متن کامل