Chitinase-like1/pom-pom1 and its homolog CTL2 are glucan-interacting proteins important for cellulose biosynthesis in Arabidopsis.

نویسندگان

  • Clara Sánchez-Rodríguez
  • Stefan Bauer
  • Kian Hématy
  • Friederike Saxe
  • Ana Belén Ibáñez
  • Vera Vodermaier
  • Cornelia Konlechner
  • Arun Sampathkumar
  • Markus Rüggeberg
  • Ernst Aichinger
  • Lutz Neumetzler
  • Ingo Burgert
  • Chris Somerville
  • Marie-Theres Hauser
  • Staffan Persson
چکیده

Plant cells are encased by a cellulose-containing wall that is essential for plant morphogenesis. Cellulose consists of β-1,4-linked glucan chains assembled into paracrystalline microfibrils that are synthesized by plasma membrane-located cellulose synthase (CESA) complexes. Associations with hemicelluloses are important for microfibril spacing and for maintaining cell wall tensile strength. Several components associated with cellulose synthesis have been identified; however, the biological functions for many of them remain elusive. We show that the chitinase-like (CTL) proteins, CTL1/POM1 and CTL2, are functionally equivalent, affect cellulose biosynthesis, and are likely to play a key role in establishing interactions between cellulose microfibrils and hemicelluloses. CTL1/POM1 coincided with CESAs in the endomembrane system and was secreted to the apoplast. The movement of CESAs was compromised in ctl1/pom1 mutant seedlings, and the cellulose content and xyloglucan structures were altered. X-ray analysis revealed reduced crystalline cellulose content in ctl1 ctl2 double mutants, suggesting that the CTLs cooperatively affect assembly of the glucan chains, which may affect interactions between hemicelluloses and cellulose. Consistent with this hypothesis, both CTLs bound glucan-based polymers in vitro. We propose that the apoplastic CTLs regulate cellulose assembly and interaction with hemicelluloses via binding to emerging cellulose microfibrils.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Brittle Culm15 Encodes a Membrane-Associated Chitinase-Like Protein Required for Cellulose Biosynthesis in Rice1[C][W][OA]

Plant chitinases, a class of glycosyl hydrolases, participate in various aspects of normal plant growth and development, including cell wall metabolism and disease resistance. The rice (Oryza sativa) genome encodes 37 putative chitinases and chitinase-like proteins. However, none of them has been characterized at the genetic level. In this study, we report the isolation of a brittle culm mutant...

متن کامل

Brittle culm15 encodes a membrane-associated chitinase-like protein required for cellulose biosynthesis in rice.

Plant chitinases, a class of glycosyl hydrolases, participate in various aspects of normal plant growth and development, including cell wall metabolism and disease resistance. The rice (Oryza sativa) genome encodes 37 putative chitinases and chitinase-like proteins. However, none of them has been characterized at the genetic level. In this study, we report the isolation of a brittle culm mutant...

متن کامل

Molecular analysis of cellulose biosynthesis in Arabidopsis.

Cellulose, an abundant, crystalline polysaccharide, is central to plant morphogenesis and to many industries. Chemical and ultrastructural analyses together with map-based cloning indicate that the RSW1 locus of Arabidopsis encodes the catalytic subunit of cellulose synthase. The cloned gene complements the rsw1 mutant whose temperature-sensitive allele is changed in one amino acid. The mutant ...

متن کامل

Dissecting the role of CHITINASE-LIKE1 in nitrate-dependent changes in root architecture.

The root phenotype of an Arabidopsis (Arabidopsis thaliana) mutant of CHITINASE-LIKE1 (CTL1), called arm (for anion-related root morphology), was previously shown to be conditional on growth on high nitrate, chloride, or sucrose. Mutants grown under restrictive conditions displayed inhibition of primary root growth, radial swelling, proliferation of lateral roots, and increased root hair densit...

متن کامل

Xyloglucan xylosyltransferases XXT1, XXT2, and XXT5 and the glucan synthase CSLC4 form Golgi-localized multiprotein complexes.

Xyloglucan is the major hemicellulosic polysaccharide in the primary cell walls of most vascular dicotyledonous plants and has important structural and physiological functions in plant growth and development. In Arabidopsis (Arabidopsis thaliana), the 1,4-β-glucan synthase, Cellulose Synthase-Like C4 (CSLC4), and three xylosyltransferases, XXT1, XXT2, and XXT5, act in the Golgi to form the xylo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Plant cell

دوره 24 2  شماره 

صفحات  -

تاریخ انتشار 2012