Detection of Pre-stage of Epileptic Seizure by Exploiting Temporal Correlation of EMD Decomposed EEG Signals
نویسندگان
چکیده
Epilepsy is one of the common neurological disorders characterized by a sudden and recurrent malfunction of the brain that is termed “seizure”, affecting over 50 million individuals worldwide. The Electroencephalogram (EEG) is the most influential technique in detection of epileptic seizures. In recent years, many research works have been devoted to the detection of epileptic seizures based on analysis of EEG signals. Despite remarkable work on seizure detection, there is no generic seizure detection scheme which performs reasonably well for different patients and different brain locations. In this paper we present a generic approach for feature extraction of preictal (pre-stage of seizure onset) and interictal (period between seizures) EEG signals using empirical mode decomposition (EMD) along with discrete cosine transformation (DCT) by exploit temporal correlation for detection of preictal phase of epileptic seizure. Then least square support vector machine is applied on the features for classifications. Results demonstrate that our proposed method outperforms the state-of-the-art methods in terms of sensitivity, specificity and accuracy to classify preictal and interictal EEG signals to the benchmark dataset extracted from different brain locations of different patients. Keywords—EEG, Epilepsy, Seizure, EMD, DCT, LS-SVM.
منابع مشابه
Optimized Seizure Detection Algorithm: A Fast Approach for Onset of Epileptic in EEG Signals Using GT Discriminant Analysis and K-NN Classifier
Background: Epilepsy is a severe disorder of the central nervous system that predisposes the person to recurrent seizures. Fifty million people worldwide suffer from epilepsy; after Alzheimer’s and stroke, it is the third widespread nervous disorder.Objective: In this paper, an algorithm to detect the onset of epileptic seizures based on the analysis of brain electrical signals (EEG) has b...
متن کاملEpileptic Seizure Detection in EEG signals Using TQWT and SVM-GOA Classifier
Background: Epilepsy is a Brain disorder disease that affects people's quality of life. If it is diagnosed at an early stage, it will not be spread. Electroencephalography (EEG) signals are used to diagnose epileptic seizures. However, this screening system cannot diagnose epileptic seizure states precisely. Nevertheless, with the help of computer-aided diagnosis systems (CADS), neurologists ca...
متن کاملEpileptic Seizure Detection by Exploiting Temporal Correlation of EEG Signals
Electroencephalogram (EEG), a record of electrical signal to represent the human brain activity, has great potential for the diagnosis to treatment of mental disorder and brain diseases such as epileptic seizure. Features extraction and classification of EEG signals is the crucial task to detect the stage of ictal (i.e., seizure period) and interictal (i.e., period between seizures) signals for...
متن کاملPrediction of Epileptic Seizures in Patients with Temporal Lobe Epilepsy (TLE) based on Cepstrum analysis and AR model of EEG signal
Epilepsy is a chronic disorder of brain function caused by abnormal and excessive electrical neurons discharge in the brain. Seizures cause disturbances in consciousness that occur without prior notice, so their prediction ability, based on EEG data, can reduce stress and improve quality of life. An epileptic patient EEG data consists of five parts: Ictal, Inter-Ictal, pre-Ictal, Post-Ictal, an...
متن کاملEpileptic seizure detection based on The Limited Penetrable visibility graph algorithm and graph properties
Introduction: Epileptic seizure detection is a key step for both researchers and epilepsy specialists for epilepsy assessment due to the non-stationariness and chaos in the electroencephalogram (EEG) signals. Current research is directed toward the development of an efficient method for epilepsy or seizure detection based the limited penetrable visibility graph (LPVG) algorith...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014