REUL Is a Novel E3 Ubiquitin Ligase and Stimulator of Retinoic-Acid-Inducible Gene-I
نویسندگان
چکیده
RIG-I and MDA5 are cytoplasmic sensors that recognize different species of viral RNAs, leads to activation of the transcription factors IRF3 and NF-kappaB, which collaborate to induce type I interferons. In this study, we identified REUL, a RING-finger protein, as a specific RIG-I-interacting protein. REUL was associated with RIG-I, but not MDA5, through its PRY and SPRY domains. Overexpression of REUL potently potentiated RIG-I-, but not MDA5-mediated downstream signalling and antiviral activity. In contrast, the RING domain deletion mutant of REUL suppressed Sendai virus (SV)-induced, but not cytoplasmic polyI:C-induced activation of IFN-beta promoter. Knockdown of endogenous REUL by RNAi inhibited SV-triggered IFN-beta expression, and also increased VSV replication. Full-length RIG-I, but not the CARD domain deletion mutant of RIG-I, underwent ubiquitination induced by REUL. The Lys 154, 164, and 172 residues of the RIG-I CARD domain were critical for efficient REUL-mediated ubiquitination, as well as the ability of RIG-I to induce activation of IFN-beta promoter. These findings suggest that REUL is an E3 ubiquitin ligase of RIG-I and specifically stimulates RIG-I-mediated innate antiviral activity.
منابع مشابه
Astrogliosis involves activation of retinoic acid-inducible gene-like signaling in the innate immune response after spinal cord injury.
Spinal cord injury (SCI) induces a glial response in which astrocytes become activated and produce inflammatory mediators. The molecular basis for regulation of glial-innate immune responses remains poorly understood. Here, we examined the activation of retinoic acid-inducible gene (RIG)-like receptors (RLRs) and their involvement in regulating inflammation after SCI. We show that astrocytes ex...
متن کاملA label-free quantitative proteomics strategy to identify E3 ubiquitin ligase substrates targeted to proteasome degradation.
The ubiquitin-proteasome system is a central mechanism for controlled proteolysis that regulates numerous cellular processes in eukaryotes. As such, defects in this system can contribute to disease pathogenesis. In this pathway, E3 ubiquitin ligases provide platforms for binding specific substrates, thereby coordinating their ubiquitylation and subsequent degradation by the proteasome. Despite ...
متن کاملThe RNA helicase Lgp2 inhibits TLR-independent sensing of viral replication by retinoic acid-inducible gene-I.
The paramyxovirus Sendai (SV), is a well-established inducer of IFN-alphabeta gene expression. In this study we show that SV induces IFN-alphabeta gene expression normally in cells from mice with targeted deletions of the Toll-IL-1 resistance domain containing adapters MyD88, Mal, Toll/IL-1R domain-containing adaptor inducing IFN-beta (TRIF), and TRIF-related adaptor molecule TLR3, or the E3 ub...
متن کاملCullin 3 mediates SRC-3 ubiquitination and degradation to control the retinoic acid response.
SRC-3 is an important coactivator of nuclear receptors including the retinoic acid (RA) receptor α. Most of SRC-3 functions are facilitated by changes in the posttranslational code of the protein that involves mainly phosphorylation and ubiquitination. We recently reported that SRC-3 is degraded by the proteasome in response to RA. Here, by using an RNAi E3-ubiquitin ligase entry screen, we ide...
متن کاملMDA5 is SUMOylated by PIAS2β in the upregulation of type I interferon signaling.
Retinoic acid-inducible protein I (RIG-I) and melanoma differentiation-associated gene 5 (MDA5) are cytosolic viral RNA sensors that induce type I interferon production (IFN). In this study, we found that MDA5 undergoes inducible SUMOylation by small ubiquitin-like modifier-1 (SUMO-1) in response to polyI:C stimulation. Enhanced SUMOylation of MDA5 by exogenously expressed SUMO-conjugating enzy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- PLoS ONE
دوره 4 شماره
صفحات -
تاریخ انتشار 2009