A concept of eliminating nonhomologous recombination for scalable and safe AAV vector generation for human gene therapy

نویسندگان

  • Biao Dong
  • Andrea R. Moore
  • Jihong Dai
  • Sean Roberts
  • Kirk Chu
  • Philipp Kapranov
  • Bernard Moss
  • Weidong Xiao
چکیده

Scalable and efficient production of high-quality recombinant adeno-associated virus (rAAV) for gene therapy remains a challenge despite recent clinical successes. We developed a new strategy for scalable and efficient rAAV production by sequestering the AAV helper genes and the rAAV vector DNA in two different subcellular compartments, made possible by using cytoplasmic vaccinia virus as a carrier for the AAV helper genes. For the first time, the contamination of replication-competent AAV particles (rcAAV) can be completely eliminated in theory by avoiding ubiquitous nonhomologous recombination. Vector DNA can be integrated into the host genomes or delivered by a nuclear targeting vector such as adenovirus. In suspension HeLa cells, the achieved vector yield per cell is similar to that from traditional triple-plasmid transfection method. The rcAAV contamination was undetectable at the limit of our assay. Furthermore, this new concept can be used not only for production of rAAV, but also for other DNA vectors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hybrid adeno-associated virus bearing nonhomologous inverted terminal repeats enhances dual-vector reconstruction of minigenes in vivo.

We have previously demonstrated that hybrid adeno-associated viral (AAV) vectors bearing nonhomologous inverted terminal repeats (ITRs) enhance directional intermolecular recombination and the efficiency of dual-AAV vector trans-splicing in cultured cells. Using hybrid-ITR vectors carrying two exons of a lacZ minigene, we demonstrate that this dual-vector approach also mediates higher levels (3...

متن کامل

Designing E1 Deleted Adenoviral Vector by Homologous Recombination

Adenoviruses are used extensively to deliver genes into mammalian cells, particularly where there is a requirement for high-level expression of transgene products in cultured cells, or for use as recombinant viral vaccines or in gene therapy. In spite of their usefulness, the construction of adenoviral vectors (AdV) is a cumbersome and lengthy process that is not readily amenable to the generat...

متن کامل

Identification and elimination of replication-competent adeno-associated virus (AAV) that can arise by nonhomologous recombination during AAV vector production.

Adeno-associated virus (AAV) vector preparations are often contaminated with variable amounts of replication-competent AAV (rcAAV), which may influence the behavior of these vectors both in cultured cells and in animals. A packaging plasmid/vector plasmid system containing no significant homology and lacking the wild-type AAV p5 promoter was constructed to eliminate the production of wild-type ...

متن کامل

Synthesis a New Viral Base Vector Carrying Single Guide RNA (sgRNA) and Green Florescent Protein (GFP)

CRISPR/Cas9 system is a powerful gene editing tool in vivo and in vitro. Currently, CRISPR/Cas9 delivery cells or tissue with different vehicles are available, and Adeno- associated virus (AAV) in one of them. Due to AAV packaging size limitation, AAV base vectors that carry CRISPR/Cas9 system do not have florescent tag like GFP for simple detection and navigation of cells, containing AAV. The ...

متن کامل

Designing an Engineered Construct Gene Sensitive to Carbohydrate In-vitro and Candidate for Human Insulin Gene Therapy In-vivo

Background and Aim: Diabetes is a common disorder worldwide, and exhaustive efforts have been made to cure this disease. Gene therapy has considered as a potential curative method that has more stability in comparison with the other pharmaceutical methods. However, the application of gene therapy as a definitive treatment demands further investigation. This study aim is to prepare a suitable hi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 41  شماره 

صفحات  -

تاریخ انتشار 2013