An improved subspace selection algorithm for meshless collocation methods
نویسندگان
چکیده
Choosing data points is a common problem for researchers who employ various meshless methods for solving partial differential equations. On one hand, high accuracy is always desired; on the other, ill-conditioning problems of the resultant matrices, that may lead to unstable algorithms, prevent some researchers from using meshless methods. For example, the optimal placements of source points in the method of fundamental solutions, or of the centers in the radial basis functions method are always unclear. Intuitively, such optimal locations will depend on many factors: the partial differential equations, the domain, the trial basis used (i.e. the employed method itself), the computational precisions, some user defined parameters, and so on. Such complexity makes the hope of having an optimal centers placement unpromising. In this paper, we provide a data-dependent algorithm that adaptively selects centers based on all the other variables. Copyright c © 2000 John Wiley & Sons, Ltd.
منابع مشابه
Stable and Convergent Unsymmetric Meshless Collocation Methods
In the theoretical part of this paper, we introduce a simplified proof technique for error bounds and convergence of a variation of E. Kansa’s well-known unsymmetric meshless collocation method. For a numerical implementation of the convergent variation, a previously proposed greedy technique is coupled with linear optimization. This algorithm allows a fully adaptive on-the-fly data-dependent m...
متن کاملResults on Meshless Collocation Techniques
Though the technique introduced by E. Kansa [7, 8] is very successful in engineering applications, there were no proven results so far on the unsymmetric meshless collocation method for solving PDE boundary value problems in strong form. While the original method cannot be proven to be fail–safe in general, we prove asymptotic feasibility for a generalized variant using separated trial and test...
متن کاملSpecial Techniques for Kernel-Based Reconstruction of Functions from Meshless Data
Here are three short stories on meshless methods using kernel techniques: • Any well–posed linear problem in the native space NΦ of a symmetric (strictly) positive definite kernel Φ can be successfully solved by symmetric meshless collocation. This applies to a large variety of standard linear PDE problems. • Relaxing interpolation conditions by allowing some small absolute error can significan...
متن کاملMeshless Collocation: Error Estimates with Application to Dynamical Systems
In this paper, we derive error estimates for generalized interpolation, in particular collocation, in Sobolev spaces. We employ our estimates to collocation problems using radial basis functions and extend and improve previously known results for elliptic problems. Finally, we use meshless collocation to approximate Lyapunov functions for dynamical systems.
متن کاملConvergence order estimates of meshless collocation methods using radial basis functions
We study meshless collocation methods using radial basis functions to approximate regular solutions of systems of equations with linear diier-ential or integral operators. Our method can be interpreted as one of the emerging meshless methods, cf. 1]. Its range of application is not conned to elliptic problems. However, the application to the boundary value problem for an elliptic operator, conn...
متن کامل