Vision-based Real-time Road Detection in Urban Traffic
نویسندگان
چکیده
Road detection is the major task of autonomous vehicle guidance. We notice that feature lines, which are parallel to the road boundaries, are reliable cues for road detection in urban traffic. Therefore we present a real-time method that extracts the most likely road model using a set of feature-line-pairs (FLPs). Unlike the traditional methods that extract a single line, we extract the feature lines in pairs. Working with a linearly parameterized road model, FLP appears some geometrical consistency, which allows us to detect each of them with a Kalman filter tracking scheme. Since each FLP determines a road model, we apply regression diagnostics technique to robustly estimate the parameters of the whole road model from all FLPs. Another Kalman filter is used to track road model from frame to frame to provide a more precise and more robust detection result. Experimental results in urban traffic demonstrate real-time processing ability and high robustness.
منابع مشابه
A Real Time Traffic Sign Detection and Recognition Algorithm based on Super Fuzzy Set
Advanced Driver Assistance Systems (ADAS) benefit from current infrastructure to discern environmental information. Traffic signs are global guidelines which inform drivers from near characteristics of paths ahead. Traffic Sign Recognition (TSR) system is an ADAS that recognize traffic signs in images captured from road and show information as an adviser or transmit them to other ADASs. In this...
متن کاملMethod of Video-Measurements of Traffic Flow Characteristics at a Road Junction
In the theory of traffic flows the main characteristics are: intensity, speed, and density. They make it possible to use hydrodynamic models. In connection with the development of modern highways and road networks, traffic flows behavior is becoming more and more complex and diverse. In particular, the B.Kerner studies have shown that the laminar solution of hydrodynamic models is poorly corre...
متن کاملA video-based real-time adaptive vehicle-counting system for urban roads
In developing nations, many expanding cities are facing challenges that result from the overwhelming numbers of people and vehicles. Collecting real-time, reliable and precise traffic flow information is crucial for urban traffic management. The main purpose of this paper is to develop an adaptive model that can assess the real-time vehicle counts on urban roads using computer vision technologi...
متن کاملLiterature Review of Traffic Assignment: Static and Dynamic
Rapid urban growth is resulting into increase in travel demand and private vehicle ownership in urban areas. In the present scenario the existing infrastructure has failed to match the demand that leads to traffic congestion, vehicular pollution and accidents. With traffic congestion augmentation on the road, delay of commuters has increased and reliability of road network has decreased. Four s...
متن کاملAn adaptive approach for real-time road traffic congestion detection using adaptive background extraction
Traffic congestion is a situation on road networks that occurs as road use increases. When traffic demand increase, the interaction between vehicles slows the speed of the traffic stream and congestion occurs. As demand approaches the capacity of a road, extreme traffic congestion sets in. Current techniques for road-traffic monitoring rely on sensors which have limited capabilities, inflexibil...
متن کامل