An integral equation formulation for the diffraction from convex plates and polyhedra.
نویسندگان
چکیده
A formulation of the problem of scattering from obstacles with edges is presented. The formulation is based on decomposing the field into geometrical acoustics, first-order, and multiple-order edge diffraction components. An existing secondary-source model for edge diffraction from finite edges is extended to handle multiple diffraction of all orders. It is shown that the multiple-order diffraction component can be found via the solution to an integral equation formulated on pairs of edge points. This gives what can be called an edge source signal. In a subsequent step, this edge source signal is propagated to yield a multiple-order diffracted field, taking all diffraction orders into account. Numerical experiments demonstrate accurate response for frequencies down to 0 for thin plates and a cube. No problems with irregular frequencies, as happen with the Kirchhoff-Helmholtz integral equation, are observed for this formulation. For the axisymmetric scattering from a circular disc, a highly effective symmetric formulation results, and results agree with reference solutions across the entire frequency range.
منابع مشابه
Modelling Decision Problems Via Birkhoff Polyhedra
A compact formulation of the set of tours neither in a graph nor its complement is presented and illustrates a general methodology proposed for constructing polyhedral models of decision problems based upon permutations, projection and lifting techniques. Directed Hamilton tours on n vertex graphs are interpreted as (n-1)- permutations. Sets of extrema of Birkhoff polyhedra are mapped to tours ...
متن کاملDUAL BOUNDARY ELEMENT ANALYSIS OF CRACKED PLATES
The dual boundary element method is formulated for the analysis of linear elastic cracked plates. The dual boundary integral equations of the method are the displacement and the traction equations. When these equations are simultaneously applied along the crack boundaries, general crack problems can be solved in a single-region formulation, with both crack boundaries discretized with discontinu...
متن کاملThree dimensional static and dynamic analysis of thick plates by the meshless local Petrov-Galerkin (MLPG) method under different loading conditions
In this paper, three dimensional (3D) static and dynamic analysis of thick plates based on the Meshless Local Petrov-Galerkin (MLPG) is presented. Using the kinematics of a three-dimensional continuum, the local weak form of the equilibrium equations is derived. A weak formulation for the set of governing equations is transformed into local integral equations on local sub-domains by using a uni...
متن کاملOzaki's conditions for general integral operator
Assume that $mathbb{D}$ is the open unit disk. Applying Ozaki's conditions, we consider two classes of locally univalent, which denote by $mathcal{G}(alpha)$ and $mathcal{F}(mu)$ as follows begin{equation*} mathcal{G}(alpha):=left{fin mathcal{A}:mathfrak{Re}left( 1+frac{zf^{prime prime }(z)}{f^{prime }(z)}right) <1+frac{alpha }{2},quad 0<alphaleq1right}, end{equation*} and begin{equation*} ma...
متن کاملA New Integral Equation Formulation for Scattering by Penetrable Diffraction Gratings
This paper is concerned with the problem of scattering of time-harmonic electromagnetic waves from penetrable diffraction gratings in the 2D polarization case. We propose a new, weakly singular, integral equation formulation for the scattering problem which is proved to be uniquely solvable. A main feature of the new integral equation formulation is that it avoids the computation of the normal ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of the Acoustical Society of America
دوره 133 6 شماره
صفحات -
تاریخ انتشار 2013