Amenability, Locally Finite Spaces, and Bi-lipschitz Embeddings
نویسنده
چکیده
We define the isoperimetric constant for any locally finite metric space and we study the property of having isoperimetric constant equal to zero. This property, called Small Neighborhood property, clearly extends amenability to any locally finite space. Therefore, we start making a comparison between this property and other notions of amenability for locally finite metric spaces that have been proposed by Gromov, Lafontaine and Pansu, by Ceccherini-Silberstein, Grigorchuk and de la Harpe and by Block and Weinberger. We discuss possible applications of the property SN in the study of embedding a metric space into another one. In particular, we propose three results: we prove that a certain class of metric graphs that are isometrically embeddable into Hilbert spaces must have the property SN. We also show, by a simple example, that this result is not true replacing property SN with amenability. As a second result, we prove that many spaces with uniform bounded geometry having a bi-lipschitz embedding into Euclidean spaces must have the property SN. Finally, we prove a Bourgain-like theorem for metric trees: a metric tree with uniform bounded geometry and without property SN does not have bi-lipschitz embeddings into finite-dimensional Hilbert spaces.
منابع مشابه
Embeddings of Proper Metric Spaces into Banach Spaces
We show that there exists a strong uniform embedding from any proper metric space into any Banach space without cotype. Then we prove a result concerning the Lipschitz embedding of locally finite subsets of Lp-spaces. We use this locally finite result to construct a coarse bi-Lipschitz embedding for proper subsets of any Lp-space into any Banach space X containing the l n p ’s. Finally using an...
متن کاملAlmost Bi-lipschitz Embeddings and Almost Homogeneous Sets
This paper is concerned with embeddings of homogeneous spaces into Euclidean spaces. We show that any homogeneous metric space can be embedded into a Hilbert space using an almost bi-Lipschitz mapping (biLipschitz to within logarithmic corrections). The image of this set is no longer homogeneous, but ‘almost homogeneous’. We therefore study the problem of embedding an almost homogeneous subset ...
متن کاملQuantitative Bi-Lipschitz embeddings of bounded curvature manifolds and orbifolds
We construct bi-Lipschitz embeddings into Euclidean space for bounded diameter subsets of manifolds and orbifolds of bounded curvature. The distortion and dimension of such embeddings is bounded by diameter, curvature and dimension alone. We also construct global bi-Lipschitz embeddings for spaces of the form Rn/Γ , where Γ is a discrete group acting properly discontinuously and by isometries o...
متن کاملMassachusetts Institute of Technology Lecturer : Michel X . Goemans
The aim of this lecture is to outline the gluing of embeddings at different scales described in James Lee’s paper Distance scales, embeddings, and metrics of negative type from SODA 2005 [1]. We begin by recalling some definitions. A map f : X → Y of metric spaces (X, dX ) and (Y, dY ) is said to be C-Lipschitz if dY (f(x), f(y)) ≤ CdX(x, y) for all x, y ∈ X. The infimum of all C such that f is...
متن کاملLow-distortion embeddings of infinite metric spaces into the real line
We present a proof of a Ramsey-type theorem for infinite metric spaces due to Matoušek. Then we show that for every K > 1 every uncountable Polish space has a perfect subset that K-bi-Lipschitz embeds into the real line. Finally we study decompositions of infinite separable metric spaces into subsets that, for some K > 1, K-bi-Lipschitz embed into the real line.
متن کامل