Printing 2-Dimentional Droplet Array for Single-Cell Reverse Transcription Quantitative PCR Assay with a Microfluidic Robot

نویسندگان

  • Ying Zhu
  • Yun-Xia Zhang
  • Wen-Wen Liu
  • Yan Ma
  • Qun Fang
  • Bo Yao
چکیده

This paper describes a nanoliter droplet array-based single-cell reverse transcription quantitative PCR (RT-qPCR) assay method for quantifying gene expression in individual cells. By sequentially printing nanoliter-scale droplets on microchip using a microfluidic robot, all liquid-handling operations including cell encapsulation, lysis, reverse transcription, and quantitative PCR with real-time fluorescence detection, can be automatically achieved. The inhibition effect of cell suspension buffer on RT-PCR assay was comprehensively studied to achieve high-sensitivity gene quantification. The present system was applied in the quantitative measurement of expression level of mir-122 in single Huh-7 cells. A wide distribution of mir-122 expression in single cells from 3061 copies/cell to 79998 copies/cell was observed, showing a high level of cell heterogeneity. With the advantages of full-automation in liquid-handling, simple system structure, and flexibility in achieving multi-step operations, the present method provides a novel liquid-handling mode for single cell gene expression analysis, and has significant potentials in transcriptional identification and rare cell analysis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nanolitre droplet array for real time reverse transcription polymerase chain reaction.

Recently, more and more effort has been put into the miniaturization of genetic tests such as quantitative PCR (qPCR), because it is no doubt a powerful tool for molecular diagnosis and quantitative biology. In this paper, we developed a low density nanolitre droplet array generated on a chemical modified silicon chip for gene quantification. Reliable and sensitive two step real time qRT-PCR as...

متن کامل

Self-Digitization Microfluidic Chip for Absolute Quantification of mRNA in Single Cells

Quantification of mRNA in single cells provides direct insight into how intercellular heterogeneity plays a role in disease progression and outcomes. Quantitative polymerase chain reaction (qPCR), the current gold standard for evaluating gene expression, is insufficient for providing absolute measurement of single-cell mRNA transcript abundance. Challenges include difficulties in handling small...

متن کامل

A Bead-Based Microfluidic Approach to Integrated Single-Cell Gene Expression Analysis by Quantitative RT-PCR.

Gene expression analysis at the single-cell level is critical to understanding variations among cells in heterogeneous populations. Microfluidic reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) is well suited to gene expression assays of single cells. We present a microfluidic approach that integrates all functional steps for RT-qPCR of a single cell, including i...

متن کامل

On-chip single-copy real-time reverse-transcription PCR in isolated picoliter droplets.

The first lab-on-chip system for picoliter droplet generation and RNA isolation, followed by reverse transcription, and PCR amplification with real-time fluorescence detection in the trapped droplets has been developed. The system utilized a shearing T-junction in a fused-silica device to generate a stream of monodisperse picoliter-scale droplets that were isolated from the microfluidic channel...

متن کامل

Multiplex, Quantitative, Reverse Transcription PCR Detection of Influenza Viruses Using Droplet Microfluidic Technology

Quantitative, reverse transcription, polymerase chain reaction (qRT-PCR) is facilitated by leveraging droplet microfluidic (DMF) system, which due to its precision dispensing and sample handling capabilities at microliter and lower volumes has emerged as a popular method for miniaturization of the PCR platform. This work substantially improves and extends the functional capabilities of our prev...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015