Arylacetamide Deacetylase is Responsible for Activation of Prasugrel in Human and Dog.
نویسندگان
چکیده
Prasugrel, a thienopyridine anti-platelet agent, is pharmacologically activated by hydrolysis and hydroxylation. It is efficiently hydrolyzed in the intestine after oral administration, and the enzyme responsible for the hydrolysis in humans was demonstrated to be carboxylesterase (CES)2. Prasugrel hydrolase activity is detected in dog intestines, where CES enzymes are absent; therefore, this prompted us to investigate the involvement of an enzyme(s) other than CES. Human arylacetamide deacetylase (AADAC) is highly expressed in the small intestine, catalyzing the hydrolysis of several clinical drugs containing small acyl moieties. In the present study, we investigated whether AADAC catalyzes prasugrel hydrolysis. Recombinant human AADAC was shown to catalyze prasugrel hydrolysis with a CLint value of 50.0 ± 1.2 ml/min/mg protein with a similar Km value to human intestinal and liver microsomes, whereas the CLint values of human CES1 and CES2 were 4.6 ± 0.1 and 6.6 ± 0.3 ml/min/mg protein, respectively. Inhibition studies using various chemical inhibitors and the relative activity factor approach suggested that the contribution of AADAC to prasugrel hydrolysis in human intestine is comparable to that of CES2. In dog intestine, the expression of AADAC, but not CES1 and CES2, was confirmed by measuring the marker hydrolase activities of each human esterase. The similar Km values and inhibition profiles between recombinant dog AADAC and small intestinal microsomes suggest that AADAC is a major enzyme responsible for prasugrel hydrolysis in dog intestine. Collectively, we found that AADAC largely contributes to prasugrel hydrolysis in both human and dog intestine.
منابع مشابه
Human Liver Arylacetamide Deacetylase MOLECULAR CLONING OF A NOVEL ESTERASE INVOLVED IN THE METABOLIC ACTIVATION OF ARYLAMINE CARCINOGENS WITH HIGH SEQUENCE S I M I M I ’ N TO HORMONE-SENSITJYE LIPASE*
Microsomal arylacetamide deacetylase (DAC) competes against the activity of cytosolic arylamine N-acetyltransferase, which catalyzes one of the initial biotransformation pathways for arylamine and heterocyclic amine carcinogens in many species and tissues. Activity determination and immunoblot analysis of DAC in human target tissues for arylamine carcinogens revealed that in extrahepatic tissu...
متن کاملIsolation and characterization of arylacetamide deacetylase in cynomolgus macaques
Arylacetamide deacetylase (AADAC), a microsomal serine esterase, hydrolyzes drugs, such as flutamide, phenacetin and rifampicin. Because AADAC has not been fully investigated at molecular levels in cynomolgus macaques, the non-human primate species widely used in drug metabolism studies, cynomolgus AADAC cDNA was isolated and characterized. The deduced amino acid sequence, highly homologous (92...
متن کاملIs Abdominal Muscle Activity Different from Lumbar Muscle Activity during Four-Point Kneeling?
Background: Stabilization exercises can improve the performance of trunk and back muscles, which are effective in the prevention and treatment of low back pain. The four-point kneeling exercise is one of the most common types of stabilization exercises. This quasi-experimental study aimed to evaluate and compare the level of activation between abdominal and lumbar muscles in the different stage...
متن کاملContributions of arylacetamide deacetylase and carboxylesterase 2 to flutamide hydrolysis in human liver.
Flutamide, an antiandrogen drug, is widely used for the treatment of prostate cancer. The major metabolic pathways of flutamide are hydroxylation and hydrolysis. The hydrolyzed metabolite, 5-amino-2-nitrobenzotrifluoride (FLU-1), is further metabolized to N-hydroxy FLU-1, an assumed hepatotoxicant. Our previous study demonstrated that arylacetamide deacetylase (AADAC), one of the major serine e...
متن کاملShort Communication Contributions of Arylacetamide Deacetylase and Carboxylesterase 2 to Flutamide Hydrolysis in Human Liver
Flutamide, an antiandrogen drug, is widely used for the treatment of prostate cancer. The major metabolic pathways of flutamide are hydroxylation and hydrolysis. The hydrolyzed metabolite, 5-amino2-nitrobenzotrifluoride (FLU-1), is further metabolized to N-hydroxy FLU-1, an assumed hepatotoxicant. Our previous study demonstrated that arylacetamide deacetylase (AADAC), one of the major serine es...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Drug metabolism and disposition: the biological fate of chemicals
دوره 44 3 شماره
صفحات -
تاریخ انتشار 2016