Modelling RNA folding under mechanical tension.
نویسندگان
چکیده
We investigate the thermodynamics and kinetics of RNA unfolding and refolding under mechanical tension. The hierarchical nature of RNA structure and the existence of thermodynamic parameters for base pair formation based on nearest-neighbour interactions allows modelling of sequence-dependent folding dynamics for any secondary structure. We calculate experimental observables such as the transition force for unfolding, the end-to-end distribution function and its variance, as well as kinetic information, for a representative RNA sequence and for a sequence containing two homopolymer segments: A.U and G.C.
منابع مشابه
Axons pull on the brain, but tension does not drive cortical folding.
During human brain development, the cerebral cortex undergoes substantial folding, leading to its characteristic highly convoluted form. Folding is necessary to accommodate the expansion of the cerebral cortex; abnormal cortical folding is linked to various neurological disorders, including schizophrenia, epilepsy, autism, and mental retardation. Although this process requires mechanical forces...
متن کاملTransition path times for nucleic Acid folding determined from energy-landscape analysis of single-molecule trajectories.
The duration of structural transitions in biopolymers is only a fraction of the time spent searching diffusively over the configurational energy landscape. We found the transition time, τ(TP), and the diffusion constant, D, for DNA and RNA folding using energy landscapes obtained from single-molecule trajectories under tension in optical traps. DNA hairpins, RNA pseudoknots, and a riboswitch al...
متن کاملHairpins under tension: RNA versus DNA
We use optical tweezers to control the folding and unfolding of individual DNA and RNA hairpins by force. Four hairpin molecules are studied in comparison: two DNA and two RNA ones. We observe that the conformational dynamics is slower for the RNA hairpins than for their DNA counterparts. Our results indicate that structures made of RNA are dynamically more stable. This difference might contrib...
متن کاملWeak temporal signals can synchronize and accelerate the transition dynamics of biopolymers under tension.
In addition to thermal noise, which is essential to promote conformational transitions in biopolymers, the cellular environment is replete with a spectrum of athermal fluctuations that are produced from a plethora of active processes. To understand the effect of athermal noise on biological processes, we studied how a small oscillatory force affects the thermally induced folding and unfolding t...
متن کاملRipping RNA by Force Using Gaussian Network Models.
Using force as a probe to map the folding landscapes of RNA molecules has become a reality thanks to major advances in single molecule pulling experiments. Although the unfolding pathways under tension are complicated to predict, studies in the context of proteins have shown that topology is the major determinant of the unfolding landscapes. By building on this finding we study the responses of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular physics
دوره 104 8 شماره
صفحات -
تاریخ انتشار 2006