Unidirectional rotary motion in a liquid crystalline environment: color tuning by a molecular motor.

نویسندگان

  • Richard A van Delden
  • Nagatoshi Koumura
  • Noboyuki Harada
  • Ben L Feringa
چکیده

Life could not exist without motion induced by a variety of molecular motors. The construction of artificial motors by chemical synthesis, which can power motions that lead to macroscopic detectable effects in a system, is a major endeavor in contemporary science. To move toward this goal, a host-guest system, composed of a nematic liquid crystal film doped with a chiral light-driven molecular motor, is assembled. Irradiation of the film results in unidirectional rotary motion of the molecular motor, which induces a motion of the mesogenic molecules leading to a molecular reorganization and, as a consequence, a change in the color of the film. In this way, by control of the rotary motion at the molecular level, color tuning over the entire visible spectrum is achieved. These findings demonstrate that a molecular motor can exert a visually observable macroscopic change in a material.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Light-driven rotary molecular motors without point chirality: a minimal design.

A fundamental requirement for achieving photoinduced unidirectional rotary motion about an olefinic bond in a molecular motor is that the potential energy surface of the excited state is asymmetric with respect to clockwise and counterclockwise rotations. In most available light-driven rotary molecular motors, such asymmetry is guaranteed by the presence of a stereocenter. Here, we present non-...

متن کامل

Unidirectional rotary motion in achiral molecular motors.

Control of the direction of motion is an essential feature of biological rotary motors and results from the intrinsic chirality of the amino acids from which the motors are made. In synthetic autonomous light-driven rotary motors, point chirality is transferred to helical chirality, and this governs their unidirectional rotation. However, achieving directional rotary motion in an achiral molecu...

متن کامل

Fine tuning of the rotary motion by structural modification in light-driven unidirectional molecular motors.

The introduction of bulky substituents at the stereogenic center of light-driven second-generation molecular motors results in an acceleration of the speed of rotation. This is due to a more strained structure with elongated C=C bonds and a higher energy level of the ground state relative to the transition state for the rate-limiting thermal isomerization step. Understanding the profound influe...

متن کامل

Ultrafast dynamics in the power stroke of a molecular rotary motor.

Light-driven molecular motors convert light into mechanical energy through excited-state reactions. Unidirectional rotary molecular motors based on chiral overcrowded alkenes operate through consecutive photochemical and thermal steps. The thermal (helix inverting) step has been optimized successfully through variations in molecular structure, but much less is known about the photochemical step...

متن کامل

Synthetic Molecular Motors

The fascinating molecular motors ubiquitous in biological systems offer a great source of inspiration for the design of artificial motors and in the quest to achieve controlled movement at the molecular level. Synthetic chemists are involved in the challenging endeavor to exploit ormimic the properties of these intriguingmolecules found in nature. Movement in biological systems can be divided i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 99 8  شماره 

صفحات  -

تاریخ انتشار 2002