Multiple population-period transient spectroscopy (MUPPETS) in excitonic systems.

نویسندگان

  • Haorui Wu
  • Mark A Berg
چکیده

Time-resolved experiments with more than one period of incoherent time evolution are becoming increasingly accessible. When applied to a two-level system, these experiments separate homogeneous and heterogeneous contributions to kinetic dispersion, i.e., to nonexponential relaxation. Here, the theory of two-dimensional (2D) multiple population-period transient spectroscopy (MUPPETS) is extended to multilevel, excitonic systems. A nonorthogonal basis set is introduced to simplify pathway calculations in multilevel systems. Because the exciton and biexciton signals have different signs, 2D MUPPETS cleanly separates the exciton and biexciton decays. In addition to separating homogeneous and heterogeneous dispersion of the exciton, correlations between the exciton and biexciton decays are measurable. Such correlations indicate shared features in the two relaxation mechanisms. Examples are calculated as both 2D time decays and as 2D rate spectra. The effect of solvent heating (i.e., thermal gratings) is also calculated in multidimensional experiments on multilevel systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ultrafast supercontinuum spectroscopy of carrier multiplication and biexcitonic effects in excited states of PbS quantum dots.

We examine the population dynamics of multiple excitons in PbS quantum dots using spectrally resolved ultrafast supercontinuum transient absorption (SC-TA) measurements. We simultaneously probe the first three excitonic transitions. The transient spectra show the presence of bleaching of absorption for the 1S(h)-1S(e) transition, as well as transients associated with the 1P(h)-1P(e) transition....

متن کامل

Quantum beats and polarization interference from excitons in quantum wells

We show that time-resolved quantum beat spectroscopy in the four-wave rnixing (FWM) geometry is a unique tool to investigate the electronic multi-level system associated with spectrally adjacent excitonic resonances. We have studied heavyand light-hole excitons, excitons associated with different and spatially separated quantum wells, and excitons associated with spatially separated growth isla...

متن کامل

A Novel Approach to Trace Time-Domain Trajectories of Power Systems in Multiple Time Scales Based Flatness

This paper works on the concept of flatness and its practical application for the design of an optimal transient controller in a synchronous machine. The feedback linearization scheme of interest requires the generation of a flat output from which the feedback control law can easily be designed. Thus the computation of the flat output for reduced order model of the synchronous machine with simp...

متن کامل

Transient grating measurements of excitonic dynamics in single-walled carbon nanotubes: The dark excitonic bottleneck.

Transient grating measurements affirm the excitonic model for single-walled carbon nanotubes (SWNT) by identifying the dark exciton (D) as the population relaxation bottleneck in semiconducting-SWNT (S-SWNT). The data allow the reconstruction of the kinetics of excitonic cascade and cooling, from band continuum to vibrational cooling in the ground electronic state. In S-SWNT, the intraband rela...

متن کامل

Structural and Optical Study of SnO Nanoparticles Synthesized Using Microwave–Assisted Hydrothermal Route

SnO nanoparticles were synthesized using microwave–assisted hydrothermal method. It was noticed that at 300 and 600 watt microwave power, SnO formed and remained in the tetragonal phase. At 900 watt, SnO2 started appearing and a mixture of SnO and SnO2 phases coexisted. The particle size varied from ~2 to ~13 nm at 300 to 900 watt radiation power. The UV-V absorption spectra showed the excitoni...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 138 3  شماره 

صفحات  -

تاریخ انتشار 2013