A General Purpose Architectural Layout for Arbitrary Quantum Computations
نویسندگان
چکیده
Exploiting recent advances in quantum trapped-ion technologies, we propose a scalable, fault-tolerant quantum computing architecture that overcomes the fundamental challenges of building a full-scale quantum computer and leaves the fabrication a daunting but primarily an engineering concern. Using a hierarchical array-based design and a quantum teleportation communication protocol, we are able to overcome the primary scalability challenges of reliability, communication, and quantum resource distribution. In particular, we present a reconfigurable quantum circuit substrate, or ”quantum FPGA” (qFPGA) which allows efficient implementation of universal quantum gates and error correction. We use this qFPGA as a basic building block for an array structure that scalably provides communication channels and quantum resource distribution. We exploit a hierarchical combination of ballistic transport of data ions and quantum teleportation to reduce the cost of reliable communication from exponential to polynomial in distance. By using a set of simulation tools we are able to evaluate a hypothetical design of a future general purpose quantum computer and describe the execution of a fault-tolerant Toffoli gate construction. Without considering classical control constraints and assuming best-possible ion-trap parameters our computer consists of level 2 encoded qubits with the Steane [[7, 1, 3]] code tightly connected by the teleportation interconnect, and capable of executing a fault-tolerant Toffoli gate in roughly 2.3 seconds. This translates to factoring a 128-bit number in slightly over 40 hours in circuits dominated by Toffoli gates.
منابع مشابه
Time-Space Efficient Simulations of Quantum Computations
We give two timeand space-efficient simulations of quantum computations with intermediate measurements, one by classical randomized computations with unbounded error and the other by quantum computations that use an arbitrary fixed universal set of gates. Specifically, our simulations show that every language solvable by a bounded-error quantum algorithm running in time t and space s is also so...
متن کاملExploring and Exploiting Quantum-Dot Cellular Automata
The Full Adders (FAs) constitute the essential elements of digital systems, in a sense that they affect the circuit parameters of such systems. With respect to the MOSFET restrictions, its replacement by new devices and technologies is inevitable. QCA is one of the accomplishments in nanotechnology nominated as the candidate for MOSFET replacement. In this article 4 new layouts are presente...
متن کاملImplication of Quantum Effects on Non-Linear Propagation of Electron Plasma Solitons
We have studied the electron exchange-correlation effect on thecharacteristics of the two-component unmagnetized dense quantum plasma withstreaming motion. For this purpose, we have used the quantum hydrodynamic model(including the effects of a quantum statistical Fermi electron temperature) for studyingthe propagation of an electrostatic electron plasma waves in such th...
متن کامل3 Smaller Circuits for Arbitrary n - qubit Diagonal Computations ∗
Several known algorithms for synthesizing quantum circuits in terms of elementary gates reduce arbitrary computations to diagonal [1, 2]. Circuits for n-qubit diagonal computations can be constructed using one (n − 1)-controlled one-qubit diagonal computation [3] and one inverter per pair of diagonal elements, not unlike the construction of classical AND-OR-NOT circuits based on the lines of a ...
متن کاملApplying Data Copy to Improve Memory Performance of General Array Computations
Data copy is an important compiler optimization which dynamically rearranges the layout of arrays by copying their elements into local buffers. Traditionally, array copy is considered expensive and has been applied only to the working sets of fully blocked computations. This paper presents an algorithm which automatically applies data copy to optimize the performance of general computations ind...
متن کامل