Impacts of Re-Vegetation on Surface Soil Moisture over the Chinese Loess Plateau Based on Remote Sensing Datasets

نویسندگان

  • Qiao Jiao
  • Rui Li
  • Fei Wang
  • Xingmin Mu
  • Pengfei Li
  • Chunchun An
چکیده

A large-scale re-vegetation supported by the Grain for Green Project (GGP) has greatly changed local eco-hydrological systems, with an impact on soil moisture conditions for the Chinese Loess Plateau. It is important to know how, exactly, re-vegetation influences soil moisture conditions, which not only crucially constrain growth and distribution of vegetation, and hence, further re-vegetation, but also determine the degree of soil desiccation and, thus, erosion risk in the region. In this study, three eco-environmental factors, which are Soil Water Index (SWI), the Normalized Difference Vegetation Index (NDVI), and precipitation, were used to investigate the response of soil moisture in the one-meter layer of top soil to the re-vegetation during the GGP. SWI was estimated based on the backscatter coefficient produced by the European Remote Sensing Satellite (ERS-1/2) and Meteorological Operational satellite program (MetOp), while NDVI was derived from SPOT imageries. Two separate periods, which are 1998–2000 and 2008–2010, were selected to examine the spatiotemporal pattern of the chosen eco-environmental factors. It has been shown that the amount of precipitation in 1998–2000 was close to that of 2008–2010 (the difference being 13.10 mm). From 1998–2000 to 2008–2010, the average annual NDVI increased for 80.99%, while the SWI decreased for 72.64% of the area on the Loess Plateau. The average NDVI over the Loess Plateau increased rapidly by 17.76% after the 10-year GGP project. However, the average SWI decreased by 4.37% for two-thirds of the area. More specifically, 57.65% of the area on the Loess Plateau experienced an increased NDVI and decreased SWI, 23.34% of the area had an increased NDVI and SWI. NDVI and SWI decreased simultaneously for 14.99% of the area, and the decreased NDVI and increased SWI occurred at the same time for 4.02% of the area. These results indicate that re-vegetation, human activities, and climate change have impacts on soil moisture. However, re-vegetation, which consumes a large quantity of soil water, may be the major factor for soil moisture change in most areas of the Loess Plateau. It is, therefore, suggested that Soil Moisture Content (SMC) should be kept in mind when carrying out re-vegetation in China’s arid and semi-arid regions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Land Surface Model and Particle Swarm Optimization Algorithm Based on the Model-Optimization Method for Improving Soil Moisture Simulation in a Semi-Arid Region

Improving the capability of land-surface process models to simulate soil moisture assists in better understanding the atmosphere-land interaction. In semi-arid regions, due to limited near-surface observational data and large errors in large-scale parameters obtained by the remote sensing method, there exist uncertainties in land surface parameters, which can cause large offsets between the sim...

متن کامل

Soil moisture and evapotranspiration of different land cover types in the Loess Plateau, China

We studied the impacts of re-vegetation on soil moisture dynamics and evapotranspiration (ET) of five land cover types in the Loess Plateau in northern China. Soil moisture and temperature variations under grass (Andropogon), subshrub (Artemisia scoparia), shrub (Spiraea pubescens), plantation forest (Robinia pseudoacacia), and crop (Zea mays) vegetation were continuously monitored during the g...

متن کامل

Distribution map of the different lithologic units in loess plateau of eastern Golestan by using remote sensing technique; Aghband research area

Introduction: Along with the climate, Soil is an essential natural resource. Although soil studies in Iran have been started more than 50 years ago, the soil map of the country has not been fully prepared yet, and only 20-25% of the lands have been mapped already. Many soil maps of Iran need to be updated, but the common methods in soil mapping are costly and time-consuming. Hence, using data o...

متن کامل

Soil Moisture Estimation in Rangelands Using Remote Sensing (Case Study: Malayer, West of Iran)

Soil moisture is generally regarded as the limiting factors in rangeland production. Although many studies have been conducted to estimate soil moisture in semiarid areas, there is little information on mountainous rangelands in west of Iran. The present study aims to investigate the soil moisture estimation in rangelands as compared to the other land uses over a mountainous area in central Zag...

متن کامل

Study on Calculation of Land Surface Evapotranspiration Using Remote Sensing

Evapotranspiration (ET) plays a significant role in regional and global climates through its partitioning in hydrological cycles, and its estimation is thus of a great importance in assessing ground water and surface water resources, predicting crop yield and planning land use. For experimenting the possibility to assess the hydrological responses of ecological restoration in the Western Chines...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Remote Sensing

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2016