Mapping residues of SUMO precursors essential in differential maturation by SUMO-specific protease, SENP1.
نویسندگان
چکیده
SUMO (small ubiquitin-related modifier) is a member of the ubiquitin-like protein family that regulates cellular function of a variety of target proteins. SUMO proteins are expressed as their precursor forms. Cleavage of the residues after the 'GG' region of these precursors by SUMO-specific proteases in maturation is a prerequisite for subsequent sumoylation. To understand further this proteolytic processing, we expressed and purified SENP1 (sentrin-specific protease 1), one of the SUMO-specific proteases, using an Escherichia coli expression system. We show that SENP1 is capable of processing all SUMO-1, -2 and -3 in vitro; however, the proteolytic efficiency of SUMO-1 is the highest followed by SUMO-2 and -3. We demonstrate further that the catalytic domain of SENP1 (SENP1C) alone can determine the substrate specificity towards SUMO-1, -2 and -3. Replacement of the C-terminal fragments after the 'GG' region of SUMO-1 and -2 precursors with that of the SUMO-3, indicates that the C-terminal fragment is essential for efficient maturation. In mutagenesis analysis, we further map two residues immediately after the 'GG' region, which determine the differential maturation. Distinct patterns of tissue distribution of SENP1, SUMO-1, -2 and -3 are characterized. Taken together, we suggest that the observed differential maturation process has its physiological significance in the regulation of the sumoylation pathway.
منابع مشابه
The structure of SENP1-SUMO-2 complex suggests a structural basis for discrimination between SUMO paralogues during processing.
The SUMO (small ubiquitin-like modifier)-specific protease SENP1 (sentrin-specific protease 1) can process the three forms of SUMO to their mature forms and deconjugate SUMO from modified substrates. It has been demonstrated previously that SENP1 processed SUMO-1 more efficiently than SUMO-2, but displayed little difference in its ability to deconjugate the different SUMO paralogues from modifi...
متن کاملCrystal structure of the SENP1 mutant C603S-SUMO complex reveals the hydrolytic mechanism of SUMO-specific protease.
SUMO (small ubiquitin-related modifier)-specific proteases catalyse the maturation and de-conjugation processes of the sumoylation pathway and modulate various cellular responses including nuclear metabolism and cell cycle progression. The active-site cysteine residue is conserved among all known SUMO-specific proteases and is not substitutable by serine in the hydrolysis reactions demonstrated...
متن کاملCharacterization of the localization and proteolytic activity of the SUMO-specific protease, SENP1.
Modification of proteins by small ubiquitin-like modifier (SUMO) plays an important role in the function, compartmentalization, and stability of target proteins, contributing to the regulation of diverse processes. SUMO-1 modification can be regulated not only at the level of conjugation; it may also be reversed by a class of proteases known as the SUMO-specific proteases. However, current unde...
متن کاملAkt SUMOylation regulates cell proliferation and tumorigenesis.
Proto-oncogene Akt plays essential roles in cell proliferation and tumorigenesis. Full activation of Akt is regulated by phosphorylation, ubiquitination, and acetylation. Here we report that SUMOylation of Akt is a novel mechanism for its activation. Systematically analyzing the role of lysine residues in Akt activation revealed that K276, which is located in a SUMOylation consensus motif, is e...
متن کاملConformational flexibility and changes underlying activation of the SUMO-specific protease SENP1 by remote substrate binding
Ubiquitin-like (Ubl) modifications regulate nearly all cellular functions in eukaryotes with the largest superfamily of Ubl-specific proteases being Cys proteases. SENP1 is a model for this protease family and responsible for processing SUMO. Here using nuclear magnetic resonance relaxation measurements, chemical shift perturbation and enzyme kinetic analysis, we provide structural insights int...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 386 Pt 2 شماره
صفحات -
تاریخ انتشار 2005