EVERY K(n)-LOCAL SPECTRUM IS THE HOMOTOPY FIXED POINTS OF ITS MORAVA MODULE

نویسندگان

  • DANIEL G. DAVIS
  • TAKESHI TORII
چکیده

Let n ≥ 1 and let p be any prime. Also, let En be the LubinTate spectrum, Gn the extended Morava stabilizer group, and K(n) the nth Morava K-theory spectrum. Then work of Devinatz and Hopkins and some results due to Behrens and the first author of this note, show that if X is a finite spectrum, then the localization LK(n)(X) is equivalent to the homotopy fixed point spectrum (LK(n)(En ∧ X))hGn , which is formed with respect to the continuous action of Gn on LK(n)(En ∧ X). In this note, we show that this equivalence holds for any (S-cofibrant) spectrum X. Also, we show that for all such X, the strongly convergent Adams-type spectral sequence abutting to π∗(LK(n)(X)) is isomorphic to the descent spectral sequence that abuts to π∗((LK(n)(En ∧X))hGn ).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A DESCENT SPECTRAL SEQUENCE FOR ARBITRARY K(n)-LOCAL SPECTRA WITH EXPLICIT E2-TERM

Let n be any positive integer and p any prime. Also, let X be any spectrum and let K(n) denote the nth Morava K-theory spectrum. Then we construct a descent spectral sequence with abutment π∗(LK(n)(X)) and E2-term equal to the continuous cohomology of Gn, the extended Morava stabilizer group, with coefficients in a certain discrete Gn-module that is built from various homotopy fixed point spect...

متن کامل

HOMOTOPY FIXED POINTS FOR LK(n)(En ∧X) USING THE CONTINUOUS ACTION

Let K(n) be the nth Morava K-theory spectrum. Let En be the Lubin-Tate spectrum, which plays a central role in understanding LK(n)(S 0), the K(n)-local sphere. For any spectrum X, define E∨(X) to be the spectrum LK(n)(En ∧ X). Let G be a closed subgroup of the profinite group Gn, the group of ring spectrum automorphisms of En in the stable homotopy category. We show that E∨(X) is a continuous G...

متن کامل

Buildings, Elliptic Curves, and the K(2)-local Sphere

We investigate a dense subgroup Γ of the second Morava stabilizer group given by a certain group of quasi-isogenies of a supersingular elliptic curve in characteristic p. The group Γ acts on the Bruhat-Tits building for GL2(Q`) through its action on the `-adic Tate module. This action has finite stabilizers, giving a small resolution for the homotopy fixed point spectrum (EhΓ 2 ) hGal by spectr...

متن کامل

Iterated Homotopy Fixed Points for the Lubin-tate Spectrum

When G is a profinite group and H and K are closed subgroups, with H normal in K, it is not always possible to form the iterated homotopy fixed point spectrum (ZhH)hK/H , where Z is a continuous G-spectrum. However, we show that, if G = Gn, the extended Morava stabilizer group, and Z = L̂(En ∧ X), where L̂ is Bousfield localization with respect to Morava K-theory, En is the Lubin-Tate spectrum, a...

متن کامل

Bousfield localization functors and Hopkins’ zeta conjecture

This paper arose from attempting to understand Bousfield localization functors in stable homotopy theory. All spectra will be p-local for a prime p throughout this paper. Recall that if E is a spectrum, a spectrum X is Eacyclic if E∧X is null. A spectrum is E-local if every map from an E-acyclic spectrum to it is null. A map X → Y is an E-equivalence if it induces an isomorphism on E∗, or equiv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010