Thalamocortical oscillations: local control of EEG slow waves.
نویسندگان
چکیده
This article starts with a brief review of the thalamocortical system architecture, which is composed of the projecting thalamic nuclei, the thalamic reticular nucleus, and the neocortex. Then we provide a description of the three states of vigilances followed by a detailed review of major brain rhythms present in the thalamocortical system, ranging from very slow to very fast oscillations. We provide descriptions of known mechanisms and hypotheses for unknown mechanisms for the generation of the different rhythms. The last part offers a detailed review on sleep slow oscillation describing its properties in the thalamocortical system, proposing a mechanism of generation of active states and a description of their propagation.
منابع مشابه
Intrinsic and synaptic mechanisms of cortical active states generation during slow wave sleep
Without any sensory input cortical networks may display spontaneous transitions between silent (hyperpolarized) and active (depolarized) states. These transitions may be periodic as observed during slow-wave sleep or irregular as spontaneous burst generation found in the isolated neocortical slabs. In this paper we will review intrinsic and synaptic mechanisms mediating properties of spontaneou...
متن کاملDynamic Analysis of the Conditional Oscillator Underlying Slow Waves in Thalamocortical Neurons
During non-REM sleep the EEG shows characteristics waves that are generated by the dynamic interactions between cortical and thalamic oscillators. In thalamic neurons, low-threshold T-type Ca(2+) channels play a pivotal role in almost every type of neuronal oscillations, including slow (< 1 Hz) waves, sleep spindles and delta waves. The transient opening of T channels gives rise to the low thre...
متن کاملModeling sleep and wakefulness in the thalamocortical system.
When the brain goes from wakefulness to sleep, cortical neurons begin to undergo slow oscillations in their membrane potential that are synchronized by thalamocortical circuits and reflected in EEG slow waves. To provide a self-consistent account of the transition from wakefulness to sleep and of the generation of sleep slow waves, we have constructed a large-scale computer model that encompass...
متن کاملTriggering sleep slow waves by transcranial magnetic stimulation.
During much of sleep, cortical neurons undergo near-synchronous slow oscillation cycles in membrane potential, which give rise to the largest spontaneous waves observed in the normal electroencephalogram (EEG). Slow oscillations underlie characteristic features of the sleep EEG, such as slow waves and spindles. Here we show that, in sleeping subjects, slow waves and spindles can be triggered no...
متن کاملCortical mechanisms of loss of consciousness: insight from TMS/EEG studies.
In a recent series of experiments we recorded the electroencephalogram (EEG) response to a direct cortical stimulation in humans during wakefulness, NREM sleep, REM sleep and anesthesia by means of a combination of transcranial magnetic stimulation (TMS) and high-density EEG (hd-EEG). TMS/hd-EEG measurements showed that, while during wakefulness and REM sleep the brain is able to sustain long-r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Current topics in medicinal chemistry
دوره 11 19 شماره
صفحات -
تاریخ انتشار 2011