Atrazine dissipation in s-triazine-adapted and nonadapted soil from Colorado and Mississippi: implications of enhanced degradation on atrazine fate and transport parameters.
نویسندگان
چکیده
Soil bacteria have developed novel metabolic abilities resulting in enhanced atrazine degradation. Consequently, there is a need to evaluate the effects of enhanced degradation on parameters used to model atrazine fate and transport. The objectives of this study were (i) to screen Colorado (CO) and Mississippi (MS) atrazine-adapted and non-adapted soil for genes that code for enzymes able to rapidly catabolize atrazine and (ii) to compare atrazine persistence, Q(10), beta, and metabolite profiles between adapted and non-adapted soils. The atzABC and/or trzN genes were detected only in adapted soil. Atrazine's average half-life in adapted soil was 10-fold lower than that of the non-adapted soil and 18-fold lower than the USEPA estimate of 3 to 4 mo. Q(10) was greater in adapted soil. No difference in beta was observed between soils. The accumulation and persistence of mono-N-dealkylated metabolites was lower in adapted soil; conversely, under suboptimal moisture levels in CO adapted soil, hydroxyatrazine concentrations exceeded 30% of the parent compounds' initial mass. Results indicate that (i) enhanced atrazine degradation and atzABC and/or trzN genes are likely widespread across the Western and Southern corn-growing regions of the USA; (ii) persistence of atrazine and its mono-N-dealkylated metabolites is significantly reduced in adapted soil; (iii) hydroxyatrazine can be a major degradation product in adapted soil; and (iv) fate, transport, and risk assessment models that assume historic atrazine degradation pathways and persistence estimates will likely overpredict the compounds' transport potential in adapted soil.
منابع مشابه
Enhanced degradation of atrazine under field conditions correlates with a loss of weed control in the glasshouse.
Enhanced degradation of atrazine has been reported in the literature, indicating the potential for reduced residual weed control with this herbicide. Experiments were conducted to determine the field dissipation of atrazine in three cropping systems: continuous Zea mays L. (CC) receiving atrazine applications each year, Gossypium hirsutum L.-Z. mays rotation (CCR) receiving applications of atra...
متن کاملEvidence for cross-adaptation between s-triazine herbicides resulting in reduced efficacy under field conditions.
BACKGROUND Enhanced atrazine degradation has been observed in agricultural soils from around the globe. Soils exhibiting enhanced atrazine degradation may be cross-adapted with other s-triazine herbicides, thereby reducing their control of sensitive weed species. The aims of this study were (1) to determine the field persistence of simazine in atrazine-adapted and non-adapted soils, (2) to comp...
متن کاملRapid development of enhanced atrazine degradation in a Dundee silt loam soil under continuous corn and in rotation with cotton.
Mississippi Delta cotton (Gossypium hirsutum L.) production in rotation with corn (Zea mays L.) was evaluated in field experiments from 2000 to 2005 at Stoneville, Mississippi. Plots maintained under minimum tillage were established in 2000 on a Dundee silt loam with treatments including continuous cotton or corn and alternate cotton-corn rotations. Mineralization and dissipation of 14C [ring]-...
متن کاملAn Investigation on the Bioavailability of SBR Bioreactor Enzyme Inhibitor Induced with Hydrogen Peroxide
Abstract Background & aim: S-triazine, is one of the most widely used herbicides of estrazines, and S-triazine, contains of atrazine, amtryn and prom ether. S-triazine is one of the most stable herbicides that pollute water resources. This material is used for controlling broad-leaved weeds and corn. The purpose of this study was to determine the bioavailability of SBR bioreactor e...
متن کاملMeasured concentrations of herbicides and model predictions of atrazine fate in the Patuxent River estuary.
The environmental fate of herbicides in estuaries is poorly understood. Estuarine physical transport processes and the episodic nature of herbicide release into surface waters complicate interpretation of water concentration measurements and allocation of sources. Water concentrations of herbicides and two triazine degradation products (CIAT [6-amino-2-chloro-4-isopropylamino-s-triazine] and CE...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of environmental quality
دوره 37 3 شماره
صفحات -
تاریخ انتشار 2008