Boundary Value Problems on a Half Sierpinski Gasket

نویسندگان

  • WEILIN LI
  • ROBERT S. STRICHARTZ
چکیده

We study boundary value problems for the Laplacian on a domain Ω consisting of the left half of the Sierpinski Gasket (SG), whose boundary is essentially a countable set of points X. For harmonic functions we give an explicit Poisson integral formula to recover the function from its boundary values, and characterize those that correspond to functions of finite energy. We give an explicit Dirichlet to Neumann map and show that it is invertible. We give an explicit description of the Dirichlet to Neumann spectra of the Laplacian with an exact count of the dimensions of eigenspaces. We compute the exact trace spaces on X of the L2 and L∞ domains of the Laplacian on SG. In terms of the these trace spaces, we characterize the functions in the L2 and L∞ domains of the Laplacian on Ω that extend to the corresponding domains on SG, and give an explicit linear extension operator in terms of piecewise biharmonic functions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fractafolds Based on the Sierpinski Gasket and Their Spectra

We introduce the notion of “fractafold”, which is to a fractal what a manifold is to a Euclidean half-space. We specialize to the case when the fractal is the Sierpinski gasket SG. We show that each such compact fractafold can be given by a cellular construction based on a finite cell graph G, which is 3-regular in the case that the fractafold has no boundary. We show explicitly how to obtain t...

متن کامل

On the existence of three solutions for the Dirichlet problem on the Sierpinski gasket

We apply a recently obtained three-critical-point theorem of B. Ricceri to prove the existence of at least three solutions of certain two-parameter Dirichlet problems defined on the Sierpinski gasket. We also show the existence of at least three nonzero solutions of certain perturbed two-parameter Dirichlet problems on the Sierpinski gasket, using both the mountain pass theorem of Ambrosetti an...

متن کامل

The Resolvent Kernel for Pcf Self-similar Fractals

For the Laplacian ∆ defined on a p.c.f. self-similar fractal, we give an explicit formula for the resolvent kernel of the Laplacian with Dirichlet boundary conditions, and also with Neumann boundary conditions. That is, we construct a symmetric function G(λ) which solves (λI − ∆)−1 f (x) = ∫ G(λ)(x, y) f (y) dμ(y). The method is similar to Kigami’s construction of the Green kernel in [Kig01, §3...

متن کامل

A note on elliptic problems on the Sierpinski gasket

Using a method that goes back to J. Saint Raymond, we prove the existence of infinitely many weak solutions of certain nonlinear elliptic problems defined on the SG. Mathematics Subject Classification (2010): 35J20, 28A80, 35J25, 35J60, 47J30, 49J52.

متن کامل

Crossover exponent for piecewise directed walk adsorption on Sierpinski fractals

We study the problem of critical adsorption of piecewise directed random walks on a boundary of fractal lattices that belong to the Sierpinski gasket family. By applying the exact real space renormalization group method, we calculate the crossover exponent φ, associated with the number of adsorbed steps, for the complete fractal family. We demonstrate that our results are very close to the resu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013