Adaptive Predictive Control using GOBF-ARX Models: An Experimental Case Study

نویسندگان

  • Muddu Madakyaru
  • Sachin C. Patwardhan
چکیده

Industrial applications of model predictive control rely mostly on linear empirical models obtained by employing time series analysis approaches. These models can quickly become obsolete and require maintenance when the operating conditions become significantly different from the design conditions. The need to generate good predictions in the face of changing operating conditions and / or plant characteristics can be fulfilled through updating the linear model parameters online. This work is aimed at the development of adaptive MPC (AMPC) scheme based on ARX models, which are parameterized using generalized orthonormal basis filters (GOBF). The proposed model structure, in addition to capturing the dynamics with respect to the manipulated inputs, facilitates modeling of stationary as well as non-stationary components of the unmeasured disturbances. The feasibility of using the proposed AMPC scheme is established by conducting experimental studies on a benchmark Heater-Mixer setup.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Predictive human operator model to be utilized as a controller using linear, neuro-fuzzy and fuzzy-ARX modeling techniques

Modeling human operator’s behavior as a controller in a closed-loop control system recently finds applications in areas such as training of inexperienced operators by expert operator’s model or developing warning systems for drivers by observing the driver model parameter variations. In this research, first, an experimental setup has been developed for collecting data from human operators as th...

متن کامل

ARX-Model based Model Predictive Control with Offset-Free Tracking

ARX models, is a suitable model class for linear control implementations. The parameter estimation problem is convex and easily handed for both SISO and MIMO system in contrast to ARMAX or State Space model. Model predictive control implementations insuring offset-free tracking are discussed and related. Special attention is given to an adaptive disturbance estimation method with time-varying f...

متن کامل

Adaptive Predictive Control Utilizing Both State-Space and Input-Output Models

This paper introduces a controller which integrates a predictive control synthesis based on a multivariable state – space model of the controlled system and an on – line identification of an ARX model corresponding to the state – space model. The used approach then combines both state – space and input – output models. The model parameters are recursively estimated using the recursive least squ...

متن کامل

Adaptive Predictive Control of Laboratory Heat Exchanger

Heat exchange belongs to the class of basic thermal processes which occur in a range of industrial technologies, particularly in the energetic, chemical, polymer and rubber industry. The process of heat exchange is often implemented by through-flow heat exchangers. It is apparent that for an exact theoretical description of dynamics of heat exchange processes it is necessary to use partial diff...

متن کامل

Multivariable Model Predictive Control for a Gas Turbine Power Plant

In this brief, constrained multi variable model predictive control (MPC) strategy is investigated for a GE9001E gas turbine power plant. So the rotor speed and exhaust gas temperature are controlled manipulating the fuel command and compressor inlet guide vanes position. A nonlinear model is introduced using conventional mathematical models and ARX identification procedure as gas turbine plant ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013