Microcantilever dynamics in liquid environment dynamic atomic force microscopy when using higher-order cantilever eigenmodes
نویسندگان
چکیده
منابع مشابه
Cantilever dynamics in AFM
Dynamic atomic force microscopy, in essence, consists of a vibrating microcantilever with a nanoscale tip that interacts with a sample surface via shortand long-range intermolecular forces. Microcantilevers possess several distinct eigenmodes and the tip-sample interaction forces are highly nonlinear. As a consequence, cantilevers vibrate in interesting, often unanticipated ways; some are detri...
متن کاملSensitivity Analysis of Frequency Response of Atomic Force Microscopy in Liquid Environment on Cantilever's Geometrical Parameters
In this paper, the non-linear dynamic response of rectangular atomic force microscopy in tapping mode is considered. The effect of cantilever’s geometrical parameters (e.g., cantilever length, width, thickness, tip length and the angle between the cantilever and the sample's surface in liquid environment has been studied by taking into account the interaction forces. Results indicate that the r...
متن کاملMultimode Q Control in Tapping-Mode AFM: Enabling Imaging on Higher Flexural Eigenmodes
Numerous dynamic atomic force microscopy (AFM) methods have appeared in recent years, which make use of the excitation and detection of higher order eigenmodes of the microcantilever. The ability to control these modes and their responses to excitation is believed to be the key to unraveling the true potential of these methods. In this paper, we highlight a multimode Q control method that exhib...
متن کاملEffects of Fluid Environment Properties on the Nonlinear Vibrations of AFM Piezoelectric Microcantilevers
Nowadays, atomic-force microscopy plays a significant role in nanoscience and nanotechnology, and is widely used for direct measurement at atomic scale and scanning the sample surfaces. In tapping mode, the microcantilever of atomic-force microscope is excited at resonance frequency. Therefore, it is important to study its resonance. Moreover, atomic-force microscopes can be operated in fluid e...
متن کاملMulti-frequency tapping-mode atomic force microscopy beyond three eigenmodes in ambient air
We present an exploratory study of multimodal tapping-mode atomic force microscopy driving more than three cantilever eigenmodes. We present tetramodal (4-eigenmode) imaging experiments conducted on a thin polytetrafluoroethylene (PTFE) film and computational simulations of pentamodal (5-eigenmode) cantilever dynamics and spectroscopy, focusing on the case of large amplitude ratios between the ...
متن کامل