Mountain pass and linking type sign-changing solutions for nonlinear problems involving the fractional Laplacian
نویسندگان
چکیده
where ⊂Rn (n≥ 2) is a bounded smooth domain, s ∈ (0, 1), (– )s denotes the fractional Laplacian, λ is a real parameter, the nonlinear term f satisfies superlinear and subcritical growth conditions at zero and at infinity. When λ≤ 0, we prove the existence of a positive solution, a negative solution and a sign-changing solution by combing minimax method with invariant sets of descending flow. When λ≥ λ1 (where λ1 denotes the first eigenvalue of the operator (– ) s in with homogeneous Dirichlet boundary data), we prove the existence of a sign-changing solution by using a variation of linking type theorems.
منابع مشابه
Existence and multiplicity of nontrivial solutions for $p$-Laplacian system with nonlinearities of concave-convex type and sign-changing weight functions
This paper is concerned with the existence of multiple positive solutions for a quasilinear elliptic system involving concave-convex nonlinearities and sign-changing weight functions. With the help of the Nehari manifold and Palais-Smale condition, we prove that the system has at least two nontrivial positive solutions, when the pair of parameters $(lambda,mu)$ belongs to a c...
متن کاملExistence of at least one nontrivial solution for a class of problems involving both p(x)-Laplacian and p(x)-Biharmonic
We investigate the existence of a weak nontrivial solution for the following problem. Our analysis is generally bathed on discussions of variational based on the Mountain Pass theorem and some recent theories one the generalized Lebesgue-Sobolev space. This paper guarantees the existence of at least one weak nontrivial solution for our problem. More precisely, by applying Ambrosetti and Rabinow...
متن کاملNontrivial Solutions of p-Superlinear p-Laplacian Problems via a Cohomological Local Splitting
We consider a quasilinear equation, involving the p-Laplace operator, with a p-superlinear nonlinearity. We prove the existence of a nontrivial solution, also when there is no mountain pass geometry, without imposing a global sign condition. Techniques of Morse theory are employed.
متن کاملSubcritical Perturbations of Resonant Linear Problems with Sign-changing Potential
We establish existence and multiplicity theorems for a Dirichlet boundary-value problem at resonance. This problem is a nonlinear subcritical perturbation of a linear eigenvalue problem studied by Cuesta, and includes a sign-changing potential. We obtain solutions using the Mountain Pass lemma and the Saddle Point theorem. Our paper extends some recent results of Gonçalves, Miyagaki, and Ma.
متن کاملMultiplicity of Positive Solutions of laplacian systems with sign-changing weight functions
In this paper, we study the multiplicity of positive solutions for the Laplacian systems with sign-changing weight functions. Using the decomposition of the Nehari manifold, we prove that an elliptic system has at least two positive solutions.
متن کامل