Utilization of monolayer MoS2 in Bragg stacks and metamaterial structures as broadband absorbers

نویسندگان

  • Bablu Mukherjee
  • Ergun Simsek
چکیده

We numerically study the possibility of using atomically thin transition metal dichalcogenides (TMDs) for applications requiring broadband absorption in the visible range of the electromagnetic spectrum. We demonstrate that when monolayer TMDs are positioned into a finite-period of multilayer Bragg stack geometry, they make broadband, wide-angle, almost polarization-independent absorbers. In our study, we consider molybdenum disulfide (MoS2) and silicon dioxide (SiO2) as semiconducting and dielectric thin film of alternate highand lowindex films, respectively. By optimizing the thickness of the SiO2 film, we find that monolayer MoS2 based Bragg stacks can absorb 94.7% of the incident energy in the visible (350–700 nm). Similar structures can be engineered to make perfect reflectors for saturable absorption applications. We also demonstrate that bandwidth of metamaterial absorbers can be expanded using monolayer TMDs. & 2016 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dual-band, Dynamically Tunable Plasmonic Metamaterial Absorbers Based on Graphene for Terahertz Frequencies

In this paper, a compact plasmonic metamaterial absorber for terahertz frequencies is proposed and simulated. The absorber is based on metamaterial graphene structures, and benefits from dynamically controllable properties of graphene. Through patterning graphene layers, plasmonic resonances are tailored to provide a dual band as well as an improved bandwidth absorption. Unit cell of the design...

متن کامل

Broadband Perfect Absorber with Monolayer MoS2 and Hexagonal Titanium Nitride Nano-disk Array

A broadband metamaterial absorber (MA) composed of hexagonal-arranged single-sized titanium nitride (TiN) nano-disk array and monolayer molybdenum disulfide (MoS2) is studied using finite-difference time-domain (FDTD) simulations. The structure of TiN nano-disk array/dielectric silica (SiO2)/aluminum (Al) is adopted in our design. By optimizing the dimension parameters of the structure, an aver...

متن کامل

Design, Fabrication and Measurement of Two-Layered Quadruple-Band Microwave Metamaterial Absorber

The design, simulation, fabrication, and measurement of two structures of metamaterial absorbers (MA) is investigated at microwave frequency in this paper. By stacking of one layer structure on the top of each other, a two-layered structure is generated. The unit cell at each layer consisting of two sets of various circular and square patches are designed so that the structure exhibit quad band...

متن کامل

Tunable and laser-reconfigurable 2D heterocrystals obtained by epitaxial stacking of crystallographically incommensurate Bi2Se3 and MoS2 atomic layers

Vertical stacking is widely viewed as a promising approach for designing advanced functionalities using two-dimensional (2D) materials. Combining crystallographically commensurate materials in these 2D stacks has been shown to result in rich new electronic structure, magnetotransport, and optical properties. In this context, vertical stacks of crystallographically incommensurate 2D materials wi...

متن کامل

Metamaterial Absorbers for Infrared Detection of Molecular Self-Assembled Monolayers

The emerging field of plasmonic metamaterials has introduced new degree of freedom to manipulate optical field from nano to macroscopic scale, offering an attractive platform for sensing applications. So far, metamaterial sensor concepts, however, have focused on hot-spot engineering to improve the near-field enhancement, rather than fully exploiting tailored material properties. Here, we prese...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016