Solution-processable graphene oxide as an efficient hole transport layer in polymer solar cells.

نویسندگان

  • Shao-Sian Li
  • Kun-Hua Tu
  • Chih-Cheng Lin
  • Chun-Wei Chen
  • Manish Chhowalla
چکیده

The utilization of graphene oxide (GO) thin films as the hole transport and electron blocking layer in organic photovoltaics (OPVs) is demonstrated. The incorporation of GO deposited from neutral solutions between the photoactive poly(3-hexylthiophene) (P3HT):phenyl-C61-butyric acid methyl ester (PCBM) layer and the transparent and conducting indium tin oxide (ITO) leads to a decrease in recombination of electrons and holes and leakage currents. This results in a dramatic increase in the OPV efficiencies to values that are comparable to devices fabricated with PEDOT:PSS as the hole transport layer. Our results indicate that GO could be a simple solution-processable alternative to PEDOT:PSS as the effective hole transport and electron blocking layer in OPV and light-emitting diode devices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Seed Layer on the Morphology of ‎Zinc Oxide Nanorods as an Electron ‎Transport Layer in Polymer Solar Cells ‎

   Zinc oxide has been considered as a promising semiconductor material for fabrication of transparent conductive oxides (TCOs), electronic devices, optoelectronics, and solar cells. Among the various morphologies of zinc oxide, nanorods are more widely used because of the ease of synthesis and providing a direct path for the transport of charge carriers. The electrochemical deposi...

متن کامل

Graphene oxide hole transport layers for large area, high efficiency organic solar cells

Graphene oxide (GO) is becoming increasingly popular for organic electronic applications. We present large active area (0.64 cm 2), solution processable,

متن کامل

Graphene Oxide:Single-Walled Carbon Nanotube-Based Interfacial Layer for All-Solution-Processed Multijunction Solar Cells in Both Regular and Inverted Geometries

Over the past decade, advances in material synthesis and interfacial engineering have produced more efficient polymer solar cells with improved absorption of the solar irradiation and charge carrier transport that have led to continuously increased power conversion efficiencies (PCE), recently surpassing 8%.[1] In parallel to the material design and engineering in the active layer, novel organi...

متن کامل

Graphene oxide nanoribbon as hole extraction layer to enhance efficiency and stability of polymer solar cells.

Graphene oxide nanoribbons for efficient and stable polymer solar cells are discussed. With controllable bandgap, good solubility and film forming property, graphene oxide nanoribbons serve as a new class of excellent hole extraction materials for efficient and stable polymer solar cells outperforming their counterparts based on conventional hole extraction materials, including PEDOT:PSS.

متن کامل

Graphene quantum dots as the hole transport layer material for high-performance organic solar cells.

We present an investigation of organic photovoltaic (OPV) cells with solution-processable graphene quantum dots (GQDs) as hole transport layers (HTLs). GQDs, with uniform sizes and good conductivity, are demonstrated to be excellent HTLs in both polymer solar cells (PSCs) and small-molecule solar cells (SMSCs) with the blend of poly(3-hexylthiophene):[6,6]-phenyl-C61-butyric acid methyl ester (...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • ACS nano

دوره 4 6  شماره 

صفحات  -

تاریخ انتشار 2010