A possible gene silencing mechanism: hypermethylation of the Keap1 promoter abrogates binding of the transcription factor Sp1 in lung cancer cells.
نویسندگان
چکیده
Hypermethylation often leads to gene silencing; however, the mechanism responsible for the low expression resulting from hypermethylation of the tumor suppressor gene Kelch-like ECH-associating protein 1 (Keap1) in human lung cancer cell lines remains unclear. In this study, using promoter deletion and site mutagenesis assays, we determined that one transcription factor stimulating protein-1 (Sp1) regulatory element in the Keap1 promoter region was important for the transcription of Keap1 in A549 cells. We demonstrated that the transcription factor Sp1 can directly bind to this element in the normal bronchial epithelial BEAS-2B cell line but not in A549 cells, as assessed with chromatin immunoprecipitation (ChIP). EMSAs and supershift assays also showed that CpG island methylation could abrogate Sp1 binding to the Keap1 promoter. Moreover, Keap1 mRNA decreased by 50% after the knock-down of Sp1 with siRNA in BEAS-2B cells, whereas the over-expression of Sp1 led to a dramatic increase in Keap1 promoter activity. The treatment of A549 cells with 5-aza-2'-deoxycytidine restored the binding of Sp1 to the promoter and Keap1 expression. Our results indicate that Sp1 is essential for Keap1 expression and that promoter methylation blocks Sp1 binding in A549 cells. These results demonstrate that hypermethylation may act as an epigenetic gene silencing mechanism, i.e., the inhibition of Sp1 binding to the hypermethylated Keap1 promoter in lung cancer cells, which suggests new approaches to lung cancer treatment.
منابع مشابه
Promoter hypermethylation of KLOTHO; an anti-senescence related gene in colorectal cancer patients of Kashmir valley
Hypermethylation of CpG islands located in the promoter regions of genes is a major event in the development of the majority of cancer types, due to the subsequent aberrant silencing of important tumor suppressor genes. KLOTHO; a novel gene associated primarily with suppressing senescence has been shown to contribute to tumorigenesis as a result of its impaired function. Recently the relevance ...
متن کاملHypermethylation of E-Cadherin and Estro-gen Receptor- Gene Promoter and Its Association with Clinicopathological Features of Breast Cancer in Iranian Patients
Background: Aberrant methylation of cytosine-guanine dinucleotide islands leads to inactivation of tumor suppressor genes in breast cancer. Tumor suppressor genes are unmethylated in normal tissue and often become hypermethylated during tumor formation, leading to gene silencing. We investigated the association between E-cadherin (CDH1) and estrogen receptor-α (ESRα) gene promoter methylation a...
متن کاملTwo Steps Methylation Specific PCR for Assessment of APC Promoter Methylation in Gastric Adenocarcinoma
Gastric Cancer (GC) is the second most common cancer in the world and a leading cause of cancer-related mortality. Methylation of promoter CpG islands (CGIs) belonging to tumor suppressor genes causes transcriptional silencing of their corresponding genes leading to carcinogenesis and other disorders. Adenomatous Polyposis Coli (APC) a tumor suppressor gene is inactivated by methylation of prom...
متن کاملEpigenetic silencing of cell adhesion molecule 1 in different cancer progenitor cells of transgenic c-Myc and c-Raf mouse lung tumors.
Understanding molecular mechanisms underlying lung cancer is a prerequisite toward treatment. To enable mechanistic investigations into the epigenetic regulation of the tumor suppressor gene cell adhesion molecule 1 (Cadm1) in lung cancer progenitor cells, we developed 10 cell lines from single, spontaneously transformed lung tumor cells isolated from c-Myc and c-Raf double-transgenic mice. Spe...
متن کاملStudy of promoter CpG island hypermethylation of cyclindependent kinase inhibitor gene p21waf1/cip1 on some breast carcinoma cell lines
The p21 belongs to the CIP/KIP family of CDK inhibitors involved in cell cycle arrest at specific stages of the cell cycle progression. DNA methylation is the best studied epigenetic mark that have been evidently associated to chromatin condensation, and repression of gene transcription. The CpG island hypermethylation in promoter region of certain genes occurs in cancer cells and affects tumor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemical and biophysical research communications
دوره 428 1 شماره
صفحات -
تاریخ انتشار 2012