Sulfonylureas rapidly cross phospholipid bilayer membranes by a free-diffusion mechanism.
نویسندگان
چکیده
Because sulfonylureas directly activate the exocytotic machinery, we were interested in the extent to which these compounds penetrate the beta-cell plasma membrane and the underlying molecular mechanism(s). We now provide evidence that sulfonylureas cross phospholipid bilayer membranes rapidly and effectively by a free-diffusion mechanism. Two sulfonylurea compounds investigated by 1H nuclear magnetic resonance spectroscopy, glibenclamide and tolbutamide, were found to incorporate into phospholipid bilayers, with the ionizable sulfonamide exposed to the aqueous interface and its apparent dissociation constant (pKa) increased to approximately 7.0. Diffusion of weak amphiphilic acids across membranes is associated with a measurable change in pH. Thus, by using a fluorescence-based pH assay, we could investigate the diffusion of sulfonylurea compounds across phospholipid bilayer membranes. A fluorescent pH indicator (pyranin or [2',7'-bis (2-carboxyethyl)-5(6)-carboxyfluorescein] [BCECF]) was trapped in egg phosphatidylcholine vesicles. Addition of glibenclamide decreased internal pH (pHin), and addition of albumin reversed this drop by 50%. With the same amount of tolbutamide, the decrease in pHin was much smaller, primarily because of the lower partitioning of tolbutamide into phospholipid bilayers. Using similar protocols, we also demonstrated diffusion by the same mechanism across the beta-cell plasma membrane. Thus, we now provide a molecular mechanism by which sulfonylureas can penetrate the plasma membrane and reach intracellular sites regulating exocytosis.
منابع مشابه
The mystery of phospholipid flip-flop in biogenic membranes.
Phospholipid flip-flop is required for bilayer assembly and the maintenance of biogenic (self-synthesizing) membranes such as the eukaryotic endoplasmic reticulum and the bacterial cytoplasmic membrane. Due to the membrane topology of phospholipid biosynthesis, newly synthesized phospholipids are initially located in the cytoplasmic leaflet of biogenic membranes and must be translocated to the ...
متن کاملSelf assembly driven by hydrophobic interactions at alkanethiol monolayers: mechanisms of formation of hybrid bilayer membranes.
The mechanism for the formation of biomimetic model cell membranes consisting of bilayers composed of alkanethiols and phospholipids was probed with a kinetic study using surface plasmon resonance. The kinetics of formation of a monolayer of phospholipid from vesicles in solution onto a hydrophobic alkanethiol monolayer is described by a model that takes into account the lipid concentration, di...
متن کاملLessons of slicing membranes: interplay of packing, free area, and lateral diffusion in phospholipid/cholesterol bilayers.
We employ 100-ns molecular dynamics simulations to study the influence of cholesterol on structural and dynamic properties of dipalmitoylphosphatidylcholine bilayers in the fluid phase. The effects of the cholesterol content on the bilayer structure are considered by varying the cholesterol concentration between 0 and 50%. We concentrate on the free area in the membrane and investigate quantiti...
متن کاملInsertion of Short Amino-Functionalized Single-Walled Carbon Nanotubes into Phospholipid Bilayer Occurs by Passive Diffusion
Carbon nanotubes have been proposed to be efficient nanovectors able to deliver genetic or therapeutic cargo into living cells. However, a direct evidence of the molecular mechanism of their translocation across cell membranes is still needed. Here, we report on an extensive computational study of short (5 nm length) pristine and functionalized single-walled carbon nanotubes uptake by phospholi...
متن کاملFatty acid transport: difficult or easy?
Transport of unesterified fatty acids (FA) into cells has been viewed either as a simple diffusion process regulated mainly by lipid physical chemistry or as a more complex process involving protein catalysis. In this review FA transport in cell membranes is broken down into three essential steps: adsorption, transmembrane movement, and desorption. The physical properties of FA in aqueous, memb...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Diabetes
دوره 52 10 شماره
صفحات -
تاریخ انتشار 2003