Cartan Pairs *

نویسنده

  • Andrzej Borowiec
چکیده

A new notion of Cartan pairs as a substitute of notion of vector fields in the noncommutative geometry is proposed. The correspondence between Cartan pairs and differential calculi is established.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cartan Subalgebras in C*-Algebras

According to J. Feldman and C. Moore’s wellknown theorem on Cartan subalgebras, a variant of the group measure space construction gives an equivalence of categories between twisted countable standard measured equivalence relations and Cartan pairs, i.e., a von Neumann algebra (on a separable Hilbert space) together with a Cartan subalgebra. A. Kumjian gave a C∗-algebraic analogue of this theore...

متن کامل

∗ - Algebras

According to J. Feldman and C. Moore's well-known theorem on Cartan subalgebras, a variant of the group measure space construction gives an equivalence of categories between twisted countable standard measured equivalence relations and Cartan pairs, i.e. a von Neumann algebra (on a separable Hilbert space) together with a Cartan subalgebra. A. Kumjian gave a C *-algebraic analogue of this theor...

متن کامل

Cartan Normal Conformal Connections from Pairs of 2 nd Order PDE ’ s Emanuel Gallo

We explore the different geometric structures that can be constructed from the class of pairs of 2nd order PDE’s that satisfy the condition of a vanishing generalized Wünschmann invariant. This condition arises naturally from the requirement of a vanishing torsion tensor. In particular, we find that from this class of PDE’s we can obtain all four-dimensional conformal Lorentzian metrics as well...

متن کامل

Stability Theorems for Symplectic and Contact Pairs

We prove Gray–Moser stability theorems for complementary pairs of forms of constant class defining symplectic pairs, contact-symplectic pairs and contact pairs. We also consider the case of contact-symplectic and contact-contact structures, in which the constant class condition on a oneform is replaced by the condition that its kernel hyperplane distribution have constant class in the sense of ...

متن کامل

Moufang symmetry II. Moufang-Mal’tsev pairs and triality

A concept of the Moufang-Malt’tsev pair is elaborated. This concept is based on the generalized Maurer-Cartan equations of a local analytic Moufang loop. Triality can be seen as a fundamental property of such pairs. Based on triality, the Yamagutian is constructed. Properties of the Yamagutian are studied. 2000 MSC: 17D10

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008