Maximum Entropy Markov Models for Semantic Role Labelling
نویسنده
چکیده
This paper investigates the application of Maximum Entropy Markov Models to semantic role labelling. Syntactic chunks are labelled according to the semantic role they fill for sentence verb predicates. The model is trained on the subset of Propbank data provided for the Conference on Computational Natural Language Learning 2004. Good precision is achieved, which is of key importance for information extraction from large corpora containing redundant data, and for generalising systems beyond task specific, hand coded template methods.
منابع مشابه
The Integration of Dependency Relation Classification and Semantic Role Labeling Using Bilayer Maximum Entropy Markov Models
This paper describes a system to solve the joint learning of syntactic and semantic dependencies. An directed graphical model is put forward to integrate dependency relation classification and semantic role labeling. We present a bilayer directed graph to express probabilistic relationships between syntactic and semantic relations. Maximum Entropy Markov Models are implemented to estimate condi...
متن کاملUBC-UPC: Sequential SRL Using Selectional Preferences. An approach with Maximum Entropy Markov Models
We present a sequential Semantic Role Labeling system that describes the tagging problem as a Maximum Entropy Markov Model. The system uses full syntactic information to select BIO-tokens from input data, and classifies them sequentially using state-of-the-art features, with the addition of Selectional Preference features. The system presented achieves competitive performance in the CoNLL-2005 ...
متن کاملSemantic Role Labelling with Tree Conditional Random Fields
In this paper we apply conditional random fields (CRFs) to the semantic role labelling task. We define a random field over the structure of each sentence’s syntactic parse tree. For each node of the tree, the model must predict a semantic role label, which is interpreted as the labelling for the corresponding syntactic constituent. We show how modelling the task as a tree labelling problem allo...
متن کاملSemantic Role Labelling With Chunk Sequences
We describe a statistical approach to semantic role labelling that employs only shallow information. We use a Maximum Entropy learner, augmented by EM-based clustering to model the fit between a verb and its argument candidate. The instances to be classified are sequences of chunks that occur frequently as arguments in the training corpus. Our best model obtains an F score of 51.70 on the test ...
متن کاملTaylor Expansion for the Entropy Rate of Hidden Markov Chains
We study the entropy rate of a hidden Markov process, defined by observing the output of a symmetric channel whose input is a first order Markov process. Although this definition is very simple, obtaining the exact amount of entropy rate in calculation is an open problem. We introduce some probability matrices based on Markov chain's and channel's parameters. Then, we try to obtain an estimate ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004