Molecular Organization of a Zinc Binding N-Terminal Modulatory Domain in a NMDA Receptor Subunit
نویسندگان
چکیده
Ionotropic glutamate receptors (iGluRs) bind agonists in a domain that has been crystallized and shown to have a bilobed structure. Eukaryotic iGluRs also possess a second extracellular N-terminal domain related to the bacterial periplasmic binding protein LIVBP. In NMDA receptors, the high-affinity Zn inhibition is eliminated by mutations in the LIVBP-like domain of the NR2A subunit. Using LIVBP structure, we have modeled this domain as two lobes connected by a hinge and show that six residues controlling Zn inhibition form two clusters facing each other across a central cleft. Upon Zn binding the two lobes close tightly around the divalent cation. Thus, the extracellular region of NR2A consists of a tandem of Venus flytrap domains, one binding the agonist and the other a modulatory ligand. Such a functional organization may apply to other eukaryotic iGluRs.
منابع مشابه
The micromolar zinc-binding domain on the NMDA receptor subunit NR2B.
Eukaryotic ionotropic glutamate receptor subunits possess a large N-terminal domain (NTD) distinct from the neighboring agonist-binding domain. In NMDA receptors, the NTDs of NR2A and NR2B form modulatory domains binding allosteric inhibitors. Despite a high sequence homology, these two domains have been shown to bind two ligands of strikingly different chemical nature. Whereas the NTD of NR2A ...
متن کاملStructure of the zinc-bound amino-terminal domain of the NMDA receptor NR2B subunit.
N-methyl-D-aspartate (NMDA) receptors belong to the family of ionotropic glutamate receptors (iGluRs) that mediate the majority of fast excitatory synaptic transmission in the mammalian brain. One of the hallmarks for the function of NMDA receptors is that their ion channel activity is allosterically regulated by binding of modulator compounds to the extracellular amino-terminal domain (ATD) di...
متن کاملImmunogenic and Protective Potentials of Recombinant Receptor Binding Domain and a C-Terminal Fragment of Clostridium botulinum Neurotoxin Type E
Clostridium Botulinum Type E neurotoxin heavy chain consists of two domains: the translocation domain asthe N-terminal half and the binding domain as the Cterminal half (Hc). One effective way to neutralize botulinum neurotoxin is to inhibit binding of this toxin to neuromuscular synapses with antibodies against binding domain. Two synthetic genes, coding for Hc (the full length binding d...
متن کاملMolecular Basis for Subtype Specificity and High-Affinity Zinc Inhibition in the GluN1-GluN2A NMDA Receptor Amino-Terminal Domain
Zinc is vastly present in the mammalian brain and controls functions of various cell surface receptors to regulate neurotransmission. A distinctive characteristic of N-methyl-D-aspartate (NMDA) receptors containing a GluN2A subunit is that their ion channel activity is allosterically inhibited by a nano-molar concentration of zinc that binds to an extracellular domain called an amino-terminal d...
متن کاملThe role of hippocampal (CA1) NMDA receptor on learning and memory in presence and absence of zinc chloride in adult male rats
Introduction: Zinc is an essential trace element that plays an important role in synaptic plasticity and modulating the activity of CNS and involve in learning and memory. Synaptic vesicle zinc in the hippocampus area exerting modulatory effects on NMDA glutamate receptor. Method: In this experiment the effects of NMDA agonist and antagonist administration intra hippocampus on passive avoidan...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neuron
دوره 28 شماره
صفحات -
تاریخ انتشار 2000