Potential application of poly(N-isopropylacrylamide) gel containing polymeric micelles to drug delivery systems.
نویسندگان
چکیده
We have investigated rapidly thermo-responsive NIPA gel containing polymer surfactant PMDP (NIPA-PMDP gel) as a potential drug carrier using (+)-l-ascorbic acid as a model drug. In the NIPA-PMDP gel system micelles of polymer surfactant PMDP are trapped by the entanglement of polymer chains inside the gel networks. Therefore, in principle the gel system tightly stores targeted drug in the micelles and rapidly releases controlled amount of the drug by switching on-off of external stimuli such as temperature or infrared laser beam. In our investigation on release profile, the NIPA-PMDP gel system showed completely different releasing behavior from that of the conventional NIPA gel. The NIPA-PMDP gel released rapidly all loaded (+)-l-ascorbic acid above the phase transition temperature (ca. 34 degrees C), while slowly released the corresponding amount of the drug below the temperature. In contrast, the conventional NIPA gel released more slowly limited amount of the drug above the phase transition temperature while similarly did to the NIPA-PMDP gel below the temperature. The release profile of the NIPA-PMDP gel seems to be governed by only kinetics of volume phase transition of the gel network but not by the hydrophobic domains of the micelles probably because of too hydrophilic nature of (+)-l-ascorbic acid.
منابع مشابه
Polymeric micelles to deliver photosensitizers for photodynamic therapy.
Polymeric micelles are emerging as attractive drug delivery systems. Hydrophobic drugs including photosensitizers for photodynamic therapy can be covalently bound or physically entrapped in the core of the micelles and thus be systemically delivered to, for example, tumors using passive or active targeting strategies. Polymers used for photosensitizer encapsulation include pluronics, poly(ethyl...
متن کاملPolymeric composite membranes for temperature and pH-responsive delivery of doxorubicin hydrochloride
Objective(s): Nowadays hydrogels are one of the upcoming classes of polymer-based controlled-release drug delivery systems. Temperature and pH-responsive delivery systems have drawn much attention because some diseases reveal themselves by a change in temperature and/or pH. The objective of this work is to prepare and characterize composite membrane using responsive nanoparticles into a polymer...
متن کاملPassive targeting of thermosensitive diblock copolymer micelles to the lungs: synthesis and characterization of poly(N-isopropylacrylamide)-block-poly(ε-caprolactone)
BACKGROUND Amphiphilic poly(N-isopropylacrylamide)-block-poly(ε-caprolactone) (PNiPAAm-b-PCL) copolymers were synthesized by ring-opening polymerization to form thermosensitive micelles as nanocarriers for bioimaging and carboplatin delivery. RESULTS The critical micelle concentration increased from 1.8 to 3.5 mg/l following the decrease of the PNiPAAm chain length. The copolymers revealed a ...
متن کاملThe Investigation of a Linear-Dendrite Copolymeric Nanoparticles As Drug Carriers: ONIOM Study
Linear–dendrite copolymers containing hyper branched poly(citric acid) and linear poly(ethylene glycol) blocks PCA–PEG–PCA are promising nonmaterial to use in nanomedicine. To investigate their potential application in biological systems (especially for drug carries) ONIOM2 calculations were applied to study the nature of particular interactions between drug and the polymeric nanoparticle...
متن کاملPreparation and Investigation of Poly (N-isopropylacrylamide-acrylamide) Membranes in Temperature Responsive Drug Delivery
Objective(s) Physiological changes in the body may be utilized as potential triggers for controlled drug delivery. Based on these mechanisms, stimulus-responsive drug delivery has been developed. Materials and Methods In this study, a kind of poly (N-isopropylacrylamide-acrylamide) membrane was prepared by radical copolymerization. Changes in swelling ratios and diameters of the membrane wer...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Colloids and surfaces. B, Biointerfaces
دوره 46 3 شماره
صفحات -
تاریخ انتشار 2005