DC algorithm for solving the transformed affine matrix rank minimization
نویسندگان
چکیده
Abstract Affine matrix rank minimization problem aims to find a low-rank or approximately low-rank matrix that satisfies a given linear system. It is well known that this problem is combinatorial and NP-hard in general. Therefore, it is important to choose the suitable substitution for this matrix rank minimization problem. In this paper, a continuous promoting low rank non-convex fraction function
منابع مشابه
Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization
The affine rank minimization problem consists of finding a matrix of minimum rank that satisfies a given system of linear equality constraints. Such problems have appeared in the literature of a diverse set of fields including system identification and control, Euclidean embedding, and collaborative filtering. Although specific instances can often be solved with specialized algorithms, the gene...
متن کاملTARM: A Turbo-type Algorithm for Affine Rank Minimization
The affine rank minimization (ARM) problem arises in many real-world applications. The goal is to recover a low-rank matrix from a small amount of noisy affine measurements. The original problem is NP-hard, and so directly solving the problem is computationally prohibitive. Approximate low-complexity solutions for ARM have recently attracted much research interest. In this paper, we design an i...
متن کاملAn accelerated proximal gradient algorithm for nuclear norm regularized linear least squares problems
The affine rank minimization problem, which consists of finding a matrix of minimum rank subject to linear equality constraints, has been proposed in many areas of engineering and science. A specific rank minimization problem is the matrix completion problem, in which we wish to recover a (low-rank) data matrix from incomplete samples of its entries. A recent convex relaxation of the rank minim...
متن کاملAn accelerated proximal gradient algorithm for nuclear norm regularized least squares problems
The affine rank minimization problem, which consists of finding a matrix of minimum rank subject to linear equality constraints, has been proposed in many areas of engineering and science. A specific rank minimization problem is the matrix completion problem, in which we wish to recover a (low-rank) data matrix from incomplete samples of its entries. A recent convex relaxation of the rank minim...
متن کاملProPPA: A Fast Algorithm for ℓ1 Minimization and Low-Rank Matrix Completion
We propose a Projected Proximal Point Algorithm (ProPPA) for solving a class of optimization problems. The algorithm iteratively computes the proximal point of the last estimated solution projected into an affine space which itself is parallel and approaching to the feasible set. We provide convergence analysis theoretically supporting the general algorithm, and then apply it for solving `1-min...
متن کامل