A conjugate Rosen’s gradient projection method with global line search for piecewise linear optimization∗

نویسنده

  • C. Beltran-Royo
چکیده

The Kelley cutting plane method is one of the methods commonly used to optimize the dual function in the Lagrangian relaxation scheme. Usually the Kelley cutting plane method uses the simplex method as the optimization engine. It is well known that the simplex method leaves the current vertex, follows an ascending edge and stops at the nearest vertex. What would happen if one would continue the line search up to the best point instead? As a possible answer, we propose the face simplex method, which freely explores the polyhedral surface by following the Rosen’s gradient projection combined with a global line search on the whole surface. Furthermore, to avoid the zig-zagging of the gradient projection, we propose a conjugate gradient version of the face simplex method. We have implemented this method in Matlab. This implementation clearly outperforms basic Matlab implementations of the simplex method. In the case of state-of-the-art simplex implementations in C, our Matlab implementation is only competitive for the case of many cutting planes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Three-terms Conjugate Gradient Algorithm for Solving Large-Scale Systems of Nonlinear Equations

Nonlinear conjugate gradient method is well known in solving large-scale unconstrained optimization problems due to it’s low storage requirement and simple to implement. Research activities on it’s application to handle higher dimensional systems of nonlinear equations are just beginning. This paper presents a Threeterm Conjugate Gradient algorithm for solving Large-Scale systems of nonlinear e...

متن کامل

A new hybrid conjugate gradient algorithm for unconstrained optimization

In this paper, a new hybrid conjugate gradient algorithm is proposed for solving unconstrained optimization problems. This new method can generate sufficient descent directions unrelated to any line search. Moreover, the global convergence of the proposed method is proved under the Wolfe line search. Numerical experiments are also presented to show the efficiency of the proposed algorithm, espe...

متن کامل

A New Hybrid Conjugate Gradient Method Based on Eigenvalue Analysis for Unconstrained Optimization Problems

In this paper‎, ‎two extended three-term conjugate gradient methods based on the Liu-Storey ({tt LS})‎ ‎conjugate gradient method are presented to solve unconstrained optimization problems‎. ‎A remarkable property of the proposed methods is that the search direction always satisfies‎ ‎the sufficient descent condition independent of line search method‎, ‎based on eigenvalue analysis‎. ‎The globa...

متن کامل

A feasible directions method on combining feasibility with descent for nonlinear constrained optimization

Abstract. In this paper, a modified gradient projection method is proposed to solve the nonlinear constrained optimization problems, where the search direction is obtained by combing feasibility with descent. In addition, it is pointed out that, for linear constrained optimization problems, this method may be simplified and viewed as the modified version to Rosen’s method. The theoretical analy...

متن کامل

Extensions of the Hestenes-Stiefel and Polak-Ribiere-Polyak conjugate gradient methods with sufficient descent property

Using search directions of a recent class of three--term conjugate gradient methods, modified versions of the Hestenes-Stiefel and Polak-Ribiere-Polyak methods are proposed which satisfy the sufficient descent condition. The methods are shown to be globally convergent when the line search fulfills the (strong) Wolfe conditions. Numerical experiments are done on a set of CUTEr unconstrained opti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005