Surface properties of new virginiamycin M(1) derivatives.
نویسندگان
چکیده
Three kinds of derivatives of the M(1) factor of virginiamycin have been synthesised: esters with long chain fatty acids, oximes with modified polar amino acids and bis-derivatives with both the ester and oxime function. The study of the surface tension time dependence of M(1) and its derivatives has shown that it is necessary to enhance simultaneously the hydrophobicity and the hydrophilicity of M(1) to render M(1) surface-active. A structure/function relationship study of the surface-active bis-derivatives has shown that enhancing the hydrophobicity of the molecule led to slower adsorption kinetics, higher stability of the monolayers formed and a better capacity to penetrate a membrane model. The repulsive electrostatic forces due to the presence of charges on the amino acids linked to M(1) lead to higher surface tensions, a greater molecular area at the interface and lower penetration into a membrane model. This study has demonstrated that modifying systematically the hydrophobicity and hydrophilicity of a non surface-active molecule allows the production of surface-active derivatives.
منابع مشابه
Preparation and properties of derivatives of virginiamycin S.
Reduction of virginiamycin S with sodium borohydride produces allo- and normal-dihydro-virginiamycin S. Reduction of the tosylhydrazone of virginiamycin S with sodium cyanoborohydride affords deoxyvirginiamycin S. These compounds are less active than virginiamycin S. Like virginiamycin S they enhance the activity of virginiamycin M1.
متن کاملFinite difference method for sixth-order derivatives of differential equations in buckling of nanoplates due to coupled surface energy and non-local elasticity theories
In this article, finite difference method (FDM) is used to solve sixth-order derivatives of differential equations in buckling analysis of nanoplates due to coupled surface energy and non-local elasticity theories. The uniform temperature change is used to study thermal effect. The small scale and surface energy effects are added into the governing equations using Eringen’s non-local elasticity...
متن کاملFinite difference method for sixth-order derivatives of differential equations in buckling of nanoplates due to coupled surface energy and non-local elasticity theories
In this article, finite difference method (FDM) is used to solve sixth-order derivatives of differential equations in buckling analysis of nanoplates due to coupled surface energy and non-local elasticity theories. The uniform temperature change is used to study thermal effect. The small scale and surface energy effects are added into the governing equations using Eringen’s non-local elasticity...
متن کاملCharacterization of biosynthetic gene cluster for the production of virginiamycin M, a streptogramin type A antibiotic, in Streptomyces virginiae.
Virginiamycin M (VM) of Streptomyces virginiae is a hybrid polyketide-peptide antibiotic with peptide antibiotic virginiamycin S (VS) as its synergistic counterpart. VM and VS belong to the Streptogramin family, which is characterized by strong synergistic antibacterial activity, and their water-soluble derivatives are a new therapeutic option for combating vancomycin-resistant Gram-positive ba...
متن کاملThe structure of inducing factors for virginiamycin production in Streptomyces virginiae.
Virginiamycin inducing factors (inducing material or inducing factor) of Streptomyces virginiae were isolated from the culture broth of this microbe and separated into three closely related compounds. They were named virginiae butanolides A, B and C and their structures were determined as 2-(1'-hydroxy-5'-methylhexyl)-3-(hydroxymethyl)butanolide (6), 2-(1'-hydroxy-4'-methylhexyl)-3-(hydroxymeth...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Colloids and surfaces. B, Biointerfaces
دوره 69 2 شماره
صفحات -
تاریخ انتشار 2009