On Semantic Generalizations of the Bernays-Schönfinkel-Ramsey Class with Finite or Co-finite Spectra

نویسندگان

  • Abhisekh Sankaran
  • Supratik Chakraborty
چکیده

Motivated by model-theoretic properties of the BernaysSchönfinkel-Ramsey (BSR) class, we present a family of semantic classes of FO formulae with finite or co-finite spectra over a relational vocabulary Σ. A class in this family is denoted EBSΣ(σ), where σ ⊆ Σ. Formulae in EBSΣ(σ) are preserved under substructures modulo a bounded core and modulo re-interpretation of predicates in Σ \ σ. We study several properties of the family EBSΣ = {EBSΣ(σ) | σ ⊆ Σ}. For example, classes in EBSΣ are spectrally indistinguishable, the smallest class, EBSΣ(Σ), is semantically equivalent to BSR over Σ, and the largest class, EBSΣ(∅), is the set of all FO formulae over Σ with finite or co-finite spectra. Furthermore, (EBSΣ,⊆) forms a lattice that is isomorphic to the powerset lattice (℘(Σ),⊆). We also show that if Σ contains at least one predicate of arity ≥ 2, there exist semantic gaps between EBSΣ(σ1) and EBSΣ(σ2) if σ1 6= σ2. This gives a natural semantic generalization of BSR as ascending chains in the lattice

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Expressive Completeness of Bernays-Schönfinkel-Ramsey Separation Logic

This paper investigates the satisfiability problem for Separation Logic, with unrestricted nesting of separating conjunctions and implications, for prenex formulae with quantifier prefix in the language ∃∗∀∗, in the cases where the universe of possible locations is either countably infinite or finite. In analogy with first-order logic with uninterpreted predicates and equality, we call this fra...

متن کامل

Toward a More Complete Alloy

Many model-finding tools, such as Alloy, charge users with providing bounds on the sizes of models. It would be preferable to automatically compute sufficient upper-bounds whenever possible. The Bernays-Schönfinkel-Ramsey fragment of first-order logic can relieve users of this burden in some cases: its sentences are satisfiable iff they are satisfied in a finite model, whose size is computable ...

متن کامل

Combinations of Theories and the Bernays-Schönfinkel-Ramsey Class

The Bernays-Schönfinkel-Ramsey (BSR) class of formulas is the class of formulas that, when written in prenex normal form, have an ∃∀ quantifier prefix and do not contain any function symbols. This class is decidable. We show here that BSR theories can furthermore be combined with another disjoint decidable theory, so that we obtain a decision procedure for quantifier-free formulas in the combin...

متن کامل

Bernays-Schönfinkel-Ramsey with Simple Bounds is NEXPTIME-complete

Linear arithmetic extended with free predicate symbols is undecidable, in general. We show that the restriction of linear arithmetic inequations to simple bounds extended with the Bernays-Schönfinkel-Ramsey free first-order fragment is decidable and NEXPTIME-complete. The result is almost tight because the Bernays-Schönfinkel-Ramsey fragment is undecidable in combination with linear difference ...

متن کامل

On the Combination of the Bernays-Schönfinkel-Ramsey Fragment with Simple Linear Integer Arithmetic

In general, first-order predicate logic extended with linear integer arithmetic is undecidable. We show that the Bernays–Schönfinkel–Ramsey fragment (∃∗∀∗-sentences) extended with a restricted form of linear integer arithmetic is decidable via finite ground instantiation. The identified ground instances can be employed to restrict the search space of existing automated reasoning procedures cons...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1002.4334  شماره 

صفحات  -

تاریخ انتشار 2010