A Proteomics and Transcriptomics Investigation of the Venom from the Barychelid Spider Trittame loki (Brush-Foot Trapdoor)

نویسندگان

  • Eivind A.B. Undheim
  • Kartik Sunagar
  • Volker Herzig
  • Laurence Kely
  • Dolyce H.W. Low
  • Timothy N.W. Jackson
  • Alun Jones
  • Nyoman Kurniawan
  • Glenn F. King
  • Syed A. Ali
  • Agostino Antunes
  • Tim Ruder
  • Bryan G. Fry
چکیده

Although known for their potent venom and ability to prey upon both invertebrate and vertebrate species, the Barychelidae spider family has been entirely neglected by toxinologists. In striking contrast, the sister family Theraphosidae (commonly known as tarantulas), which last shared a most recent common ancestor with Barychelidae over 200 million years ago, has received much attention, accounting for 25% of all the described spider toxins while representing only 2% of all spider species. In this study, we evaluated for the first time the venom arsenal of a barychelid spider, Trittame loki, using transcriptomic, proteomic, and bioinformatic methods. The venom was revealed to be dominated by extremely diverse inhibitor cystine knot (ICK)/knottin peptides, accounting for 42 of the 46 full-length toxin precursors recovered in the transcriptomic sequencing. In addition to documenting differential rates of evolution adopted by different ICK/knottin toxin lineages, we discovered homologues with completely novel cysteine skeletal architecture. Moreover, acetylcholinesterase and neprilysin were revealed for the first time as part of the spider-venom arsenal and CAP (CRiSP/Allergen/PR-1) were identified for the first time in mygalomorph spider venoms. These results not only highlight the extent of venom diversification in this neglected ancient spider lineage, but also reinforce the idea that unique venomous lineages are rich pools of novel biomolecules that may have significant applied uses as therapeutics and/or insecticides.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Peptidomic and transcriptomic profiling of four distinct spider venoms

Venom based research is exploited to find novel candidates for the development of innovative pharmacological tools, drug candidates and new ingredients for cosmetic and agrochemical industries. Moreover, venomics, as a well-established approach in systems biology, helps to elucidate the genetic mechanisms of the production of such a great molecular biodiversity. Today the advances made in the p...

متن کامل

An Experimental Investigation into the Arching Effect in Fine Sand

In the current paper results of a well instrumented experimental procedure for studying the arching effect in loose and dense sand are presented. The apparatus comprises concentric circular trapdoors with different diameters that can yield downward while stresses and deformations are recorded simultaneously. As the trapdoor starts to yield, the whole soil mass deforms elastically. However, afte...

متن کامل

Frictional Strain Hardening-softening in Experimental and Numerical Investigation of Arching Effect

In the current paper the results of a numerical simulation that were verified by a well instrumented experimental procedure for studying the arching effect over a trapdoor in sand is presented. To simulate this phenomenon with continuum mechanics, the experimental procedure is modeled in ABAQUS code using stress dependent hardening in elastic state and plastic strain dependent frictional harden...

متن کامل

Precision Medicine: A New Revolution in Healthcare System

Every human being is different based on genetics, lifestyle, and environmental factors. Novel medical technologies have become more precise owing to molecular information, including genomics, transcriptomics, proteomics, metabolomics, etc. The “omics” technologies have opened up new horizons for healthcare systems, enabling them to prevent and/or diagnose diseases more precisel...

متن کامل

Structural and Functional Diversity of Peptide Toxins from Tarantula Haplopelma hainanum (Ornithoctonus hainana) Venom Revealed by Transcriptomic, Peptidomic, and Patch Clamp Approaches.

Spider venom is a complex mixture of bioactive peptides to subdue their prey. Early estimates suggested that over 400 venom peptides are produced per species. In order to investigate the mechanisms responsible for this impressive diversity, transcriptomics based on second generation high throughput sequencing was combined with peptidomic assays to characterize the venom of the tarantula Haplope...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2013