Two endoplasmic reticulum PDI peroxidases increase the efficiency of the use of peroxide during disulfide bond formation.

نویسندگان

  • Van Dat Nguyen
  • Mirva J Saaranen
  • Anna-Riikka Karala
  • Anna-Kaisa Lappi
  • Lei Wang
  • Irina B Raykhel
  • Heli I Alanen
  • Kirsi E H Salo
  • Chih-Chen Wang
  • Lloyd W Ruddock
چکیده

Disulfide bond formation in the endoplasmic reticulum by the sulfhydryl oxidase Ero1 family is thought to be accompanied by the concomitant formation of hydrogen peroxide. Since secretory cells can make substantial amounts of proteins that contain disulfide bonds, the production of this reactive oxygen species could have potentially lethal consequences. Here, we show that two human proteins, GPx7 and GPx8, labeled as secreted glutathione peroxidases, are actually endoplasmic reticulum-resident protein disulfide isomerase peroxidases. In vitro, the addition of GPx7 or GPx8 to a folding protein along with protein disulfide isomerase and peroxide enables the efficient oxidative refolding of a reduced denatured protein. Furthermore, both GPx7 and GPx8 interact with Ero1α in vivo, and GPx7 significantly increases oxygen consumption by Ero1α in vitro. Hence, GPx7 and GPx8 may represent a novel route for the productive use of peroxide produced by Ero1α during disulfide bond formation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ero1p oxidizes protein disulfide isomerase in a pathway for disulfide bond formation in the endoplasmic reticulum.

Native protein disulfide bond formation in the endoplasmic reticulum (ER) requires protein disulfide isomerase (PDI) and Ero1p. Here we show that oxidizing equivalents flow from Ero1p to substrate proteins via PDI. PDI is predominantly oxidized in wild-type cells but is reduced in an ero1-1 mutant. Direct dithiol-disulfide exchange between PDI and Ero1p is indicated by the capture of PDI-Ero1p ...

متن کامل

FORUM EDITORIAL Updates on ‘‘Endoplasmic Reticulum Redox’’

Probably the most important message that a Forum on the reduction–oxidation (redox) environment in the endoplasmic reticulum (ER) must nowadays convey is that an ‘‘ER redox state’’ as such does not exist. The ER rather features a variety of redox systems, which—in many cases—react independently with incoming substrates and xenobiotics. Thus, any statement claiming ER hyperor hypo-oxidation unde...

متن کامل

Inactivation of mammalian Ero1α is catalysed by specific protein disulfide-isomerases

Disulfide formation within the endoplasmic reticulum is a complex process requiring a disulfide exchange protein such as PDI (protein disulfide-isomerase) and a mechanism to form disulfides de novo. In mammalian cells, the major pathway for de novo disulfide formation involves the enzyme Ero1α (endoplasmic reticulum oxidase 1α) which couples oxidation of thiols to the reduction of molecular oxy...

متن کامل

Domain architecture of protein-disulfide isomerase facilitates its dual role as an oxidase and an isomerase in Ero1p-mediated disulfide formation.

Native disulfide bond formation in eukaryotes is dependent on protein-disulfide isomerase (PDI) and its homologs, which contain varying combinations of catalytically active and inactive thioredoxin domains. However, the specific contribution of PDI to the formation of new disulfides versus reduction/rearrangement of non-native disulfides is poorly understood. We analyzed the role of individual ...

متن کامل

Synergistic cooperation of PDI family members in peroxiredoxin 4-driven oxidative protein folding

The mammalian endoplasmic reticulum (ER) harbors disulfide bond-generating enzymes, including Ero1α and peroxiredoxin 4 (Prx4), and nearly 20 members of the protein disulfide isomerase family (PDIs), which together constitute a suitable environment for oxidative protein folding. Here, we clarified the Prx4 preferential recognition of two PDI family proteins, P5 and ERp46, and the mode of intera...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of molecular biology

دوره 406 3  شماره 

صفحات  -

تاریخ انتشار 2011