Isolating plasma from blood using a dielectrophoresis-active hydrophoretic device.

نویسندگان

  • Sheng Yan
  • Jun Zhang
  • Gursel Alici
  • Haiping Du
  • Yonggang Zhu
  • Weihua Li
چکیده

Plasma is a complex substance that contains proteins and circulating nucleic acids and viruses that can be utilised for clinical diagnostics, albeit a precise analysis depends on the plasma being totally free of cells. We proposed the use of a dielectrophoresis (DEP)-active hydrophoretic method to isolate plasma from blood in a high-throughput manner. This microfluidic device consists of anisotropic microstructures embedded on the top of the channel which generate lateral pressure gradients while interdigitised electrodes lay on the bottom of the channel which can push particles or cells into a higher level using a negative DEP force. Large and small particles or cells (3 μm and 10 μm particles, and red blood cells, white blood cells, and platelets) can be focused at the same time in our DEP-active hydrophoretic device at an appropriate flow rate and applied voltage. Based on this principle, all the blood cells were filtrated from whole blood and then the plasma was extracted with a purity of 94.2% and a yield of 16.5% at a flow rate of 10 μL min(-1). This solved the challenging problem caused by the relatively low throughput of the DEP based device. Our DEP-active hydrophoretic device is a flexible and tunable system that can control the lateral positions of particles by modulating the external voltages without redesigning and fabricating a new channel, and because it is easy to operate, it is easily compatible with other microfluidic platforms that are used for further detection.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Making a hydrophoretic focuser tunable using a diaphragm.

Microfluidic diagnostic devices often require handling particles or cells with different sizes. In this investigation, a tunable hydrophoretic device was developed which consists of a polydimethylsiloxane (PDMS) slab with hydrophoretic channel, a PDMS diaphragm with pressure channel, and a glass slide. The height of the hydrophoretic channel can be tuned simply and reliably by deforming the ela...

متن کامل

On-chip high-throughput manipulation of particles in a dielectrophoresis-active hydrophoretic focuser

This paper proposes a novel concept of dielectrophoresis (DEP)-active hydrophoretic focusing of micro-particles and murine erythroleukemia (MEL) cells. The DEP-active hydrophoretic platform consists of crescent shaped grooves and interdigitated electrodes that generate lateral pressure gradients. These embedded electrodes exert a negative DEP force onto the particles by pushing them into a narr...

متن کامل

Continuous blood cell separation by hydrophoretic filtration.

We propose a new hydrophoretic method for continuous blood cell separation using a microfluidic device composed of slanted obstacles and filtration obstacles. The slanted obstacles have a larger height and gap than the particles in order to focus them to a sidewall by hydrophoresis. In the successive structure, the height and gap of the filtration obstacles with a filtration pore are set betwee...

متن کامل

Dielectrophoresis has broad applicability to marker-free isolation of tumor cells from blood by microfluidic systems.

The number of circulating tumor cells (CTCs) found in blood is known to be a prognostic marker for recurrence of primary tumors, however, most current methods for isolating CTCs rely on cell surface markers that are not universally expressed by CTCs. Dielectrophoresis (DEP) can discriminate and manipulate cancer cells in microfluidic systems and has been proposed as a molecular marker-independe...

متن کامل

Tuneable hydrophoretic separation using elastic deformation of poly(dimethylsiloxane).

This paper demonstrates a method for tuning elastomeric microchannels for hydrophoretic separation made in poly(dimethylsiloxane) (PDMS). Uniform compressive strain is imposed on the elastomeric microchannel between two acrylic substrates by fastening the bolts. The elastomeric microchannel can change its cross-section during compression, simultaneously tuning the criterion for hydrophoretic or...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Lab on a chip

دوره 14 16  شماره 

صفحات  -

تاریخ انتشار 2014