On approximate solutions of semilinear evolution equations

نویسندگان

  • Carlo Morosi
  • Livio Pizzocchero
چکیده

A general framework is presented to discuss the approximate solutions of an evolution equation in a Banach space, with a linear part generating a semigroup and a sufficiently smooth nonlinear part. A theorem is presented, allowing to infer from an approximate solution the existence of an exact solution. According to this theorem, the interval of existence of the exact solution and the distance of the latter from the approximate solution can be evaluated solving a one-dimensional ”control” integral equation, where the unknown gives a bound on the previous distance as a function of time. For example, the control equation can be applied to the approximation methods based on the reduction of the evolution equation to finite-dimensional manifolds: among them, the Galerkin method is discussed in detail. To illustrate this framework, the nonlinear heat equation is considered. In this case the control equation is used to evaluate the error of the Galerkin approximation; depending on the initial datum, this approach either grants global existence of the solution or gives fairly accurate bounds on the blow up time.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Continuous dependence on coefficients for stochastic evolution equations with multiplicative Levy Noise and monotone nonlinearity

Semilinear stochastic evolution equations with multiplicative L'evy noise are considered‎. ‎The drift term is assumed to be monotone nonlinear and with linear growth‎. ‎Unlike other similar works‎, ‎we do not impose coercivity conditions on coefficients‎. ‎We establish the continuous dependence of the mild solution with respect to initial conditions and also on coefficients. ‎As corollaries of ...

متن کامل

On approximate solutions of semilinear evolution equations II. Generalizations, and applications to Navier-Stokes equations

In our previous paper [12], a general framework was outlined to treat the approximate solutions of semilinear evolution equations; more precisely, a scheme was presented to infer from an approximate solution the existence (local or global in time) of an exact solution, and to estimate their distance. In the first half of the present work the abstract framework of [12] is extended, so as to be a...

متن کامل

$L^p$-existence of mild solutions of fractional differential equations in Banach space

We study the existence of mild solutions for semilinear fractional differential equations with nonlocal initial conditions in $L^p([0,1],E)$, where $E$ is a separable Banach space. The main ingredients used in the proof of our results are measure of noncompactness, Darbo and Schauder fixed point theorems. Finally, an application is proved to illustrate the results of this work. 

متن کامل

Optimal Feedback Control of Fractional Semilinear Integro-differential Equations in The Banach Spaces

Recently, there has been significant development in the existence of mild solutions for fractional semilinear integro-differential equations but optimal control is not provided. The aim of this paper is studying optimal feedback control for fractional semilinear integro-differential equations in an arbitrary Banach space associated with operators ...

متن کامل

Backward uniqueness of stochastic parabolic like equations driven by Gaussian multiplicative noise

One proves here the backward uniqueness of solutions to stochastic semilinear parabolic equations and also for the tamed Navier–Stokes equations driven by linearly multiplicative Gaussian noises. Applications to approximate controllability of nonlinear stochastic parabolic equations with initial controllers are given. The method of proof relies on the logarithmic convexity property known to hol...

متن کامل

Existence of Solutions of Abstract Fractional Impulsive Semilinear Evolution Equations

In this paper we prove the existence of solutions of fractional impulsive semilinear evolution equations in Banach spaces. A nonlocal Cauchy problem is discussed for the evolution equations. The results are obtained using fractional calculus and fixed point theorems. An example is provided to illustrate the theory.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003