The dosage of the neuroD2 transcription factor regulates amygdala development and emotional learning.

نویسندگان

  • Chin-Hsing Lin
  • Stacey Hansen
  • Zhenshan Wang
  • Daniel R Storm
  • Stephen J Tapscott
  • James M Olson
چکیده

The amygdala is centrally involved in formation of emotional memory and response to fear or risk. We have demonstrated that the lateral and basolateral amygdala nuclei fail to form in neuroD2 null mice and neuroD2 heterozygotes have fewer neurons in this region. NeuroD2 heterozygous mice show profound deficits in emotional learning as assessed by fear conditioning. Unconditioned fear was also diminished in neuroD2 heterozygotes compared to wild-type controls. Several key molecular regulators of emotional learning were diminished in the brains of neuroD2 heterozygotes including Ulip1, alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor, and GABA(A) receptor. Thus, neuroD2 is essential for amygdala development and genes involved in amygdala function are altered in neuroD2-deficient mice.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of neuroD2 expression in mouse brain.

The basic helix-loop-helix (bHLH) transcription factor, neuroD2, induces neuronal differentiation and promotes neuronal survival. Reduced levels of neuroD2 were previously shown to cause motor deficits, ataxia, and seizure propensity. Because neuroD2 levels may be critical for brain function, we studied the regulation of neuroD2 gene in cell culture and transgenic mouse models. In transgenic mi...

متن کامل

NEUROD2 Regulates Stim1 Expression and Store-Operated Calcium Entry in Cortical Neurons

Calcium signaling controls many key processes in neurons, including gene expression, axon guidance, and synaptic plasticity. In contrast to calcium influx through voltage- or neurotransmitter-gated channels, regulatory pathways that control store-operated calcium entry (SOCE) in neurons are poorly understood. Here, we report a transcriptional control of Stim1 (stromal interaction molecule 1) ge...

متن کامل

The Neuronal PAS Domain Protein 4 (Npas4) Is Required for New and Reactivated Fear Memories

The Neuronal PAS domain protein 4 (Npas4) is a neuronal activity-dependent immediate early gene that has recently been identified as a transcription factor which regulates the transcription of genes that control inhibitory synapse development and synaptic plasticity. The role Npas4 in learning and memory, however, is currently unknown. Here, we systematically examine the role of Npas4 in audito...

متن کامل

Regulation of Thalamocortical Patterning and Synaptic Maturation by NeuroD2

During cortical development, both activity-dependent and genetically determined mechanisms are required to establish proper neuronal connectivity. While activity-dependent transcription may link the two processes, specific transcription factors that mediate such a process have not been identified. We identified the basic helix-loop-helix (bHLH) transcription factor Neurogenic Differentiation 2 ...

متن کامل

NeuroD2 is necessary for development and survival of central nervous system neurons.

NeuroD2 is sufficient to induce cell cycle arrest and neurogenic differentiation in nonneuronal cells. To determine whether this bHLH transcription factor was necessary for normal brain development, we used homologous recombination to replace the neuroD2 coding region with a beta-galactosidase reporter gene. The neuroD2 gene expressed the reporter in a subset of neurons in the central nervous s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 102 41  شماره 

صفحات  -

تاریخ انتشار 2005