Interactions of nisin and pediocin PA-1 with closely related lactic acid bacteria that manifest over 100-fold differences in bacteriocin sensitivity.
نویسندگان
چکیده
The natural variation in the susceptibilities of gram-positive bacteria towards the bacteriocins nisin and pediocin PA-1 is considerable. This study addresses the factors associated with this variability for closely related lactic acid bacteria. We compared two sets of nonbacteriocinogenic strains for which the MICs of nisin and pediocin PA-1 differed 100- to 1,000-fold: Lactobacillus sake DSM20017 and L. sake DSM20497 and Pediococcus dextrinicus and Pediococcus pentosaccus. Strikingly, the bacteriocin-sensitive and -insensitive strains showed a similar concentration-dependent dissipation of their membrane potential (delta psi) after exposure to these bacteriocins. The bacteriocin-induced dissipation of delta psi below the MICs for the insensitive strains did not coincide with a reduction of intracellular ATP pools and glycolytic rates. This was not observed with the sensitive strains. Analysis of membrane lipid properties revealed minor differences in the phospho- and glycolipid compositions of both sets of strains. The interactions of the bacteriocins with strain-specific lipids were not significantly different in a lipid monolayer assay. Further lipid analysis revealed higher in situ membrane fluidity of the bacteriocin-sensitive Pediococcus strain compared with that for the insensitive strain, but the opposite was found for the L. sake strains. Our results provide evidence that the association of bacteriocins with the cell membrane and their subsequent insertion take place in a similar way for cells that have a high or a low natural tolerance towards bacteriocins. For insensitive strains, overall membrane constitution rather than mere membrane fluidity may preclude the formation of pores with sufficient diameters and lifetimes to ultimately cause cell death.
منابع مشابه
Preliminary tests on nisin and pediocin production using waste protein sources. Factorial and kinetic studies.
Lactic acid bacteria, the object of current interest as bacteriocin producers, are microorganisms with complex requirements for peptidic sources, making them appropriate indicators for testing the suitability of formulations based on proteinaceous wastes for use as microbiological media. Different peptones obtained from visceral and fish muscle residues promoted growth of lactic acid bacteria w...
متن کاملFrequency of bacteriocin resistance development and associated fitness costs in Listeria monocytogenes.
Bacteriocin-producing starter cultures have been suggested as natural food preservatives; however, development of resistance in the target organism is a major concern. We investigated the development of resistance in Listeria monocytogenes to the two major bacteriocins pediocin PA-1 and nisin A, with a focus on the variations between strains and the influence of environmental conditions. While ...
متن کاملPediocin PA-1, a Wide-Spectrum Bacteriocin trom Lactic Acid Bacteria
Pediocin PA-l is a broad-spectrum lactic acid bacteria bacteriocin that shows a particularly strong activity against Listeria monocytogenes, a foodborne pathogen of special concern among the food industries. This antimicrobial peptide is the most extensively studied class Ila (or pediocin family) bacteriocin, and it has been sufficiently well characterized to be used as a food biopreservative. ...
متن کاملPediocin PA-1, a wide-spectrum bacteriocin from lactic acid bacteria.
Pediocin PA-1 is a broad-spectrum lactic acid bacteria bacteriocin that shows a particularly strong activity against Listeria monocytogenes, a foodborne pathogen of special concern among the food industries. This antimicrobial peptide is the most extensively studied class Ila (or pediocin family) bacteriocin, and it has been sufficiently well characterized to be used as a food biopreservative. ...
متن کاملEnhanced production of pediocin PA-1 and coproduction of nisin and pediocin PA-1 by Lactococcus lactis.
The production and secretion of class II bacteriocins share a number of features that allow the interchange of genetic determinants between certain members of this group of antimicrobial peptides. Lactococcus lactis IL1403 encodes translocatory functions able to recognize and mediate secretion of lactococcin A. The ability of this strain to also produce the pediococcal bacteriocin pediocin PA-1...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 63 9 شماره
صفحات -
تاریخ انتشار 1997