Mga, a dual-specificity transcription factor that interacts with Max and contains a T-domain DNA-binding motif.
نویسندگان
چکیده
The basic-helix-loop-helix-leucine zipper (bHLHZip) proteins Myc, Mad and Mnt are part of a transcription activation/repression system involved in the regulation of cell proliferation. The function of these proteins as transcription factors is mediated by heterodimerization with the small bHLHZip protein Max, which is required for their specific DNA binding to E-box sequences. We have identified a novel Max-interacting protein, Mga, which contains a Myc-like bHLHZip motif, but otherwise shows no relationship with Myc or other Max-interacting proteins. Like Myc, Mad and Mnt proteins, Mga requires heterodimerization with Max for binding to the preferred Myc-Max-binding site CACGTG. In addition to the bHLHZip domain, Mga contains a second DNA-binding domain: the T-box or T-domain. The T-domain is a highly conserved DNA-binding motif originally defined in Brachyury and characteristic of the Tbx family of transcription factors. Mga binds the preferred Brachyury-binding sequence and represses transcription of reporter genes containing promoter-proximal Brachyury-binding sites. Surprisingly, Mga is converted to a transcription activator of both Myc-Max and Brachyury site-containing reporters in a Max-dependent manner. Our results suggest that Mga functions as a dual-specificity transcription factor that regulates the expression of both Max-network and T-box family target genes.
منابع مشابه
Regulation of mga transcription in the group A streptococcus: specific binding of mga within its own promoter and evidence for a negative regulator.
Transcription of mga, encoding the multiple virulence gene regulator of the group A streptococcus, is positively autoregulated. This regulation requires a DNA region (Pmga) that contains both a promoter proximal to mga (P2) and a promoter located further upstream (P1). To determine if Mga has a direct role in this process, its ability to bind to specific sequences within Pmga was tested. A puri...
متن کاملAnalysis of an artificial zinc finger epigenetic modulator: widespread binding but limited regulation
Artificial transcription factors (ATFs) and genomic nucleases based on a DNA binding platform consisting of multiple zinc finger domains are currently being developed for clinical applications. However, no genome-wide investigations into their binding specificity have been performed. We have created six-finger ATFs to target two different 18 nt regions of the human SOX2 promoter; each ATF is co...
متن کاملAn essential phosphorylation-site domain of human cdc25C interacts with both 14-3-3 and cyclins.
Human cdc25C is a dual-specificity phosphatase involved in the regulation of cell cycle progression in both unperturbed cells and in cells subject to DNA damage or replication checkpoints. In this study, we describe the structure-function relationship of an essential domain of human cdc25C that interacts with 14-3-3 proteins. We show that this domain is a bi-functional interactive motif that in...
متن کاملStructural basis for the specialization of Nur, a nickel-specific Fur homolog, in metal sensing and DNA recognition
Nur, a member of the Fur family, is a nickel-responsive transcription factor that controls nickel homeostasis and anti-oxidative response in Streptomyces coelicolor. Here we report the 2.4-A resolution crystal structure of Nur. It contains a unique nickel-specific metal site in addition to a nonspecific common metal site. The identification of the 6-5-6 motif of the Nur recognition box and a Nu...
متن کاملIn silico structural analysis of quorum sensing genes in Vibrio fischeri
Quorum sensing controls the luminescence of Vibrio fischeri through the transcriptional activator LuxR and the specific autoinducer signal produced by luxI. Amino acid sequences of these two genes were analyzed using bioinformatics tools. LuxI consists of 193 amino acids and appears to contain five α-helices and six ß-sheets when analyzed by SSpro8. LuxI belongs to the autoinducer synthetase fa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The EMBO journal
دوره 18 24 شماره
صفحات -
تاریخ انتشار 1999