Asynchronous Replication, Mono-Allelic Expression, and Long Range Cis-Effects of ASAR6

نویسندگان

  • Nathan Donley
  • Eric P. Stoffregen
  • Leslie Smith
  • Christina Montagna
  • Mathew J. Thayer
چکیده

Mammalian chromosomes initiate DNA replication at multiple sites along their length during each S phase following a temporal replication program. The majority of genes on homologous chromosomes replicate synchronously. However, mono-allelically expressed genes such as imprinted genes, allelically excluded genes, and genes on female X chromosomes replicate asynchronously. We have identified a cis-acting locus on human chromosome 6 that controls this replication-timing program. This locus encodes a large intergenic non-coding RNA gene named Asynchronous replication and Autosomal RNA on chromosome 6, or ASAR6. Disruption of ASAR6 results in delayed replication, delayed mitotic chromosome condensation, and activation of the previously silent alleles of mono-allelic genes on chromosome 6. The ASAR6 gene resides within an ∼1.2 megabase domain of asynchronously replicating DNA that is coordinated with other random asynchronously replicating loci along chromosome 6. In contrast to other nearby mono-allelic genes, ASAR6 RNA is expressed from the later-replicating allele. ASAR6 RNA is synthesized by RNA Polymerase II, is not polyadenlyated, is restricted to the nucleus, and is subject to random mono-allelic expression. Disruption of ASAR6 leads to the formation of bridged chromosomes, micronuclei, and structural instability of chromosome 6. Finally, ectopic integration of cloned genomic DNA containing ASAR6 causes delayed replication of entire mouse chromosomes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An autosomal locus that controls chromosome-wide replication timing and mono-allelic expression.

Mammalian DNA replication initiates at multiple sites along chromosomes at different times, following a temporal replication program. Homologous alleles typically replicate synchronously; however, mono-allelically expressed genes such as imprinted genes, allelically excluded genes and genes on the female X chromosome replicate asynchronously. We have used a chromosome engineering strategy to id...

متن کامل

ASAR15, A cis-Acting Locus that Controls Chromosome-Wide Replication Timing and Stability of Human Chromosome 15

DNA replication initiates at multiple sites along each mammalian chromosome at different times during each S phase, following a temporal replication program. We have used a Cre/loxP-based strategy to identify cis-acting elements that control this replication-timing program on individual human chromosomes. In this report, we show that rearrangements at a complex locus at chromosome 15q24.3 resul...

متن کامل

Regulatory effects of cis- and trans-LncRNAs on differential expression of genes following infection with viral hemorrhagic septicemia virus in rainbow trout (Oncorhynchus mykiss)

In this study the cis and trans regulatory effect of long non-coding genes (lncRNA) on the expression of genes in fish infected by Viral hemorrhagic septicemia virus (VHS) was investigated using RNA-seq technology. At the end of experimental period (the thirty fifth day), total RNA was extracted from spleen tissue (group treated with virus) and physiological serum (control group) was used to pr...

متن کامل

Cis-regulatory variation is typically polyallelic in Drosophila.

Gene expression levels vary heritably, with approximately 25-35% of the loci affecting expression acting in cis. We characterized standing cis-regulatory variation among 16 wild-derived strains of Drosophila melanogaster. Our experiment's robust biological and technical replication enabled precise estimates of variation in allelic expression on a high-throughput SNP genotyping platform. We obse...

متن کامل

Allele-specific expression patterns reveal biases and embryo-specific parent-of-origin effects in hybrid maize.

We employed allele-specific expression (ASE) analyses to document biased allelic expression in maize (Zea mays). A set of 316 quantitative ASE assays were used to profile the relative allelic expression in seedling tissue derived from five maize hybrids. The different hybrids included in this study exhibit a range of heterosis levels; however, we did not observe differences in the frequencies o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2013