Alternative cyclization in GFP-like proteins family. The formation and structure of the chromophore of a purple chromoprotein from Anemonia sulcata.

نویسندگان

  • V I Martynov
  • A P Savitsky
  • N Y Martynova
  • P A Savitsky
  • K A Lukyanov
  • S A Lukyanov
چکیده

Anemonia sulcata purple protein (asFP595) belongs to a family of green fluorescent protein (GFP)-like proteins from the Anthozoa species. Similar to GFP, asFP595 apparently forms its chromophore by modifying amino acids within its polypeptide chain. Until now, the GFP-like proteins from Anthozoa were thought to contain chromophores with the same imidazolidinone core as GFP. Mass spectral analysis of a chromophore-containing tryptic pentapeptide from asFP595 demonstrates that chromophore formation in asFP595 is stoichiometrically the same as that in GFP: one H(2)O and two H(+) are released while a Schiff base and dehydrotyrosine are formed. However, structural studies of this asFP595 chromopeptide show that in contrast to GFP, the other peptide bond nitrogen and carbonyl carbon are required for chromophore cyclization, a reaction that yields the six-membered heterocycle 2-(4-hydroxybenzylidene)-6-hydroxy-2,5-dihydropyrazine. Spectrophotometric titration reveals three pH-dependent forms of the asFP595 chromopeptide: yellow (absorption maximum = 430 nm) at pH 3.0; red (absorption maximum = 535 nm) at pH 8.0; and colorless (absorption maximum = 380 nm) at pH 14.0. The pK(a) values for these spectral transitions (6.8 and 10.9) are consistent with the ionization of the phenolic group of dehydrotyrosine and deprotonation of the amidinium cation in the chromophore heterocycle, respectively. The amidinium group in asFP595 accounts for the unique absorption spectrum of the protein, which is substantially red-shifted relative to that of GFP. When the asFP595 chromophore cyclizes, the Cys-Met bond adjacent to the chromophore hydrolyzes, splitting the chromoprotein into 8- and 20-kDa fragments. High performance liquid chromatography analysis of a tryptic digest of denatured asFP595 shows that a pentapeptide with the cleaved Cys-Met bond is the only fragment associated with the red-shifted absorbance. These results imply that fragmentation of asFP595 is a critical step in protein maturation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A purple-blue chromoprotein from Goniopora tenuidens belongs to the DsRed subfamily of GFP-like proteins.

A number of recently cloned chromoproteins homologous to the green fluorescent protein show a substantial bathochromic shift in absorption spectra. Compared with red fluorescent protein from Discosoma sp. (DsRed), mutants of these so-called far-red proteins exhibit a clear red shift in emission spectra as well. Here we report that a far-red chromoprotein from Goniopora tenuidens (gtCP) contains...

متن کامل

Chromophore environment provides clue to "kindling fluorescent protein" riddle.

asCP, the unique green fluorescent protein-like nonfluorescent chromoprotein from the sea anemone Anemonia sulcata, becomes fluorescent ("kindles") upon green light irradiation, with maximum emission at 595 nm. The kindled protein then relaxes to a nonfluorescent state or can be "quenched" instantly by blue light irradiation. In this work, we used asCP mutants to investigate the mechanism under...

متن کامل

ISTC 3223 THE STRUCTURE OF THE CHROMOPHORE WITHIN A RED FLUORESCENT PROTEIN FROM ZOANTHUS sp

Here we present the study of the chromophore structure of the purple chromoprotein from Condylactis gigantea. Tandem mass spectrometry and H and C NMR of the chromopeptide reveal that the protein contains a chromophore with a chemical structure identical to that of the red fluorescent protein from Discosoma sp. A single A63G substitution demonstrates that the nature of the first amino acid of t...

متن کامل

Chromophore formation in green fluorescent protein.

The green fluorescent protein (GFP) from the jellyfish Aequorea Victoria forms an intrinsic chromophore through cyclization and oxidation of an internal tripeptide motif [Prasher, D. C., et al. (1992) Gene 111, 229-233; Cody, C. E., et al. (1993) Biochemistry 32, 1212-1218]. We monitored the formation of the chromophore in vitro using the S65T-GFP chromophore mutant. S65T-GFP recovered from inc...

متن کامل

The Role of the Tight-Turn, Broken Hydrogen Bonding, Glu222 and Arg96 in the Post-translational Green Fluorescent Protein Chromophore Formation.

Green Fluorescent Proteins (GFP) and GFP-like proteins all undergo an autocatalytic post-translational modification to form a centrally located chromophore. Structural analyses of all the GFP and GFP-like proteins in the protein databank were undertaken to determine the role of the tight-turn, broken hydrogen bonding, Gly67, Glu222 and Arg96 in the biosynthesis of the imidazolone group from 65S...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 276 24  شماره 

صفحات  -

تاریخ انتشار 2001